大都市以外MCMC的最优缩放

Pub Date : 2021-04-05 DOI:10.1017/apr.2022.37
Sanket Agrawal, Dootika Vats, K. Łatuszyński, G. Roberts
{"title":"大都市以外MCMC的最优缩放","authors":"Sanket Agrawal, Dootika Vats, K. Łatuszyński, G. Roberts","doi":"10.1017/apr.2022.37","DOIUrl":null,"url":null,"abstract":"Abstract The problem of optimally scaling the proposal distribution in a Markov chain Monte Carlo algorithm is critical to the quality of the generated samples. Much work has gone into obtaining such results for various Metropolis–Hastings (MH) algorithms. Recently, acceptance probabilities other than MH are being employed in problems with intractable target distributions. There are few resources available on tuning the Gaussian proposal distributions for this situation. We obtain optimal scaling results for a general class of acceptance functions, which includes Barker’s and lazy MH. In particular, optimal values for Barker’s algorithm are derived and found to be significantly different from that obtained for the MH algorithm. Our theoretical conclusions are supported by numerical simulations indicating that when the optimal proposal variance is unknown, tuning to the optimal acceptance probability remains an effective strategy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimal scaling of MCMC beyond Metropolis\",\"authors\":\"Sanket Agrawal, Dootika Vats, K. Łatuszyński, G. Roberts\",\"doi\":\"10.1017/apr.2022.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The problem of optimally scaling the proposal distribution in a Markov chain Monte Carlo algorithm is critical to the quality of the generated samples. Much work has gone into obtaining such results for various Metropolis–Hastings (MH) algorithms. Recently, acceptance probabilities other than MH are being employed in problems with intractable target distributions. There are few resources available on tuning the Gaussian proposal distributions for this situation. We obtain optimal scaling results for a general class of acceptance functions, which includes Barker’s and lazy MH. In particular, optimal values for Barker’s algorithm are derived and found to be significantly different from that obtained for the MH algorithm. Our theoretical conclusions are supported by numerical simulations indicating that when the optimal proposal variance is unknown, tuning to the optimal acceptance probability remains an effective strategy.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2022.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要马尔可夫链蒙特卡罗算法中建议分布的最优缩放问题对生成样本的质量至关重要。对于各种Metropolis-Hastings (MH)算法,已经进行了大量的工作来获得这样的结果。最近,除了MH之外,可接受概率也被用于难以处理的目标分布问题。针对这种情况调优高斯提议分布的可用资源很少。我们得到了一类可接受函数的最优缩放结果,其中包括Barker算法和lazy MH算法,特别是Barker算法的最优值与MH算法的最优值明显不同。我们的理论结论得到了数值模拟的支持,表明当最优提案方差未知时,调整到最优接受概率仍然是一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimal scaling of MCMC beyond Metropolis
Abstract The problem of optimally scaling the proposal distribution in a Markov chain Monte Carlo algorithm is critical to the quality of the generated samples. Much work has gone into obtaining such results for various Metropolis–Hastings (MH) algorithms. Recently, acceptance probabilities other than MH are being employed in problems with intractable target distributions. There are few resources available on tuning the Gaussian proposal distributions for this situation. We obtain optimal scaling results for a general class of acceptance functions, which includes Barker’s and lazy MH. In particular, optimal values for Barker’s algorithm are derived and found to be significantly different from that obtained for the MH algorithm. Our theoretical conclusions are supported by numerical simulations indicating that when the optimal proposal variance is unknown, tuning to the optimal acceptance probability remains an effective strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信