一种迭代光线追踪算法,在保持整体精度的同时提高模拟速度

IF 1.3 Q3 ACOUSTICS
H. Autio, N. Vardaxis, Delphine Bard Hagberg
{"title":"一种迭代光线追踪算法,在保持整体精度的同时提高模拟速度","authors":"H. Autio, N. Vardaxis, Delphine Bard Hagberg","doi":"10.3390/acoustics5010019","DOIUrl":null,"url":null,"abstract":"Ray tracing is a frequently used method for acoustic simulations, valued for its calculation speed and ease of use. Although it is fast, there are no fully ray tracing-based real-time simulation methods or engines. Under real-time restrictions, ray tracing simulations lose precision and the variance inherent in the random simulation method has too much impact on the outcome. In this paper, an algorithm called iterative ray tracing is presented that reduces the negative effects of real-time restrictions by iteratively improving the initial calculation and increasing the precision over time. In addition, new estimates of the expected value and variance of ray tracing simulations are presented and used to show the iteration steps in the new algorithm reduce variance, while maintaining the expected value. Simulations using iterative ray tracing are compared to measurements and simulations using the classical ray tracing method, and it is shown that iterative ray tracing can be used to improve precision over time. Although more testing is needed, iterative ray tracing can be used to extend most ray tracing algorithms, in order to decrease the adverse effects of real-time restrictions.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Iterative Ray Tracing Algorithm to Increase Simulation Speed While Maintaining Overall Precision\",\"authors\":\"H. Autio, N. Vardaxis, Delphine Bard Hagberg\",\"doi\":\"10.3390/acoustics5010019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ray tracing is a frequently used method for acoustic simulations, valued for its calculation speed and ease of use. Although it is fast, there are no fully ray tracing-based real-time simulation methods or engines. Under real-time restrictions, ray tracing simulations lose precision and the variance inherent in the random simulation method has too much impact on the outcome. In this paper, an algorithm called iterative ray tracing is presented that reduces the negative effects of real-time restrictions by iteratively improving the initial calculation and increasing the precision over time. In addition, new estimates of the expected value and variance of ray tracing simulations are presented and used to show the iteration steps in the new algorithm reduce variance, while maintaining the expected value. Simulations using iterative ray tracing are compared to measurements and simulations using the classical ray tracing method, and it is shown that iterative ray tracing can be used to improve precision over time. Although more testing is needed, iterative ray tracing can be used to extend most ray tracing algorithms, in order to decrease the adverse effects of real-time restrictions.\",\"PeriodicalId\":72045,\"journal\":{\"name\":\"Acoustics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/acoustics5010019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics5010019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

光线追踪是声学模拟中常用的方法,因其计算速度和易用性而备受重视。尽管它很快,但还没有完全基于光线跟踪的实时模拟方法或引擎。在实时限制下,光线跟踪模拟会失去精度,随机模拟方法中固有的方差对结果影响太大。在本文中,提出了一种称为迭代光线跟踪的算法,该算法通过迭代改进初始计算并随着时间的推移提高精度来减少实时限制的负面影响。此外,还提出了光线跟踪模拟的期望值和方差的新估计,并用于显示新算法中的迭代步骤在保持期望值的同时减少方差。将使用迭代射线追踪的模拟与使用经典射线追踪方法的测量和模拟进行比较,结果表明,迭代射线追踪可以随着时间的推移提高精度。尽管还需要更多的测试,但迭代光线跟踪可以用于扩展大多数光线跟踪算法,以减少实时限制的不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Iterative Ray Tracing Algorithm to Increase Simulation Speed While Maintaining Overall Precision
Ray tracing is a frequently used method for acoustic simulations, valued for its calculation speed and ease of use. Although it is fast, there are no fully ray tracing-based real-time simulation methods or engines. Under real-time restrictions, ray tracing simulations lose precision and the variance inherent in the random simulation method has too much impact on the outcome. In this paper, an algorithm called iterative ray tracing is presented that reduces the negative effects of real-time restrictions by iteratively improving the initial calculation and increasing the precision over time. In addition, new estimates of the expected value and variance of ray tracing simulations are presented and used to show the iteration steps in the new algorithm reduce variance, while maintaining the expected value. Simulations using iterative ray tracing are compared to measurements and simulations using the classical ray tracing method, and it is shown that iterative ray tracing can be used to improve precision over time. Although more testing is needed, iterative ray tracing can be used to extend most ray tracing algorithms, in order to decrease the adverse effects of real-time restrictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信