分层相流中水平管内蒸汽冷凝有效传热系数的预测

Q3 Earth and Planetary Sciences
V. Sereda, V. Rifert, V. Gorin, P. Barabash
{"title":"分层相流中水平管内蒸汽冷凝有效传热系数的预测","authors":"V. Sereda, V. Rifert, V. Gorin, P. Barabash","doi":"10.6001/energetika.v68i1.4861","DOIUrl":null,"url":null,"abstract":"In modern condensers of air conditioning systems, heat pumps, evaporators of seawater desalination systems, and heaters of power plants, the process of vapour condensation is carried out mainly inside the horizontal tubes and channels. Heat transfer processes occurring in condensers have a significant effect on the overall energy efficiency of the mentioned systems. In this paper, the experimental investigation of heat transfer during condensation of freons R22, R406a, and R407c in the plain smooth tube with d = 17 mm were carried out with the following parameters: ts = 35–40°C, G = 10–100 kg/(m2s), x = 0.8–0.1, q = 5–50 kW/m2, ΔT = 4–14 K. The unique measurements of circumferential heat fluxes and heat transfer coefficients were carried out with the thick wall method during different condensation modes. It can be inferred that with the increase of the heat flux, at the top part of the tube the thickness of the condensate film increases, which leads to the decrease in heat transfer. At the bottom of the tube, the increase in the heat flux enhances heat transfer coefficient, that is characteristic of the turbulent liquid flow in the tube. The obtained results allowed improving the prediction of effective heat transfer coefficients for vapour condensation, which takes into account the influence of condensate flow in the lower part of the tube on the heat transfer. This method generalises with sufficient accuracy (error ± 30%) the experimental data on condensation of freons R22, R134a, R123, R125, R32, R410a, propane, isobutene, propylene, dimethyl ether, carbon dioxide, and methane under stratified flow conditions. Using this method for designing heat exchangers, which utilise such types of fluids, will increase the efficiency of thermal energy systems.","PeriodicalId":35639,"journal":{"name":"Energetika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of effective heat transfer coefficients for vapour condensation inside horizontal tubes in stratified phase flow\",\"authors\":\"V. Sereda, V. Rifert, V. Gorin, P. Barabash\",\"doi\":\"10.6001/energetika.v68i1.4861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern condensers of air conditioning systems, heat pumps, evaporators of seawater desalination systems, and heaters of power plants, the process of vapour condensation is carried out mainly inside the horizontal tubes and channels. Heat transfer processes occurring in condensers have a significant effect on the overall energy efficiency of the mentioned systems. In this paper, the experimental investigation of heat transfer during condensation of freons R22, R406a, and R407c in the plain smooth tube with d = 17 mm were carried out with the following parameters: ts = 35–40°C, G = 10–100 kg/(m2s), x = 0.8–0.1, q = 5–50 kW/m2, ΔT = 4–14 K. The unique measurements of circumferential heat fluxes and heat transfer coefficients were carried out with the thick wall method during different condensation modes. It can be inferred that with the increase of the heat flux, at the top part of the tube the thickness of the condensate film increases, which leads to the decrease in heat transfer. At the bottom of the tube, the increase in the heat flux enhances heat transfer coefficient, that is characteristic of the turbulent liquid flow in the tube. The obtained results allowed improving the prediction of effective heat transfer coefficients for vapour condensation, which takes into account the influence of condensate flow in the lower part of the tube on the heat transfer. This method generalises with sufficient accuracy (error ± 30%) the experimental data on condensation of freons R22, R134a, R123, R125, R32, R410a, propane, isobutene, propylene, dimethyl ether, carbon dioxide, and methane under stratified flow conditions. Using this method for designing heat exchangers, which utilise such types of fluids, will increase the efficiency of thermal energy systems.\",\"PeriodicalId\":35639,\"journal\":{\"name\":\"Energetika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6001/energetika.v68i1.4861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6001/energetika.v68i1.4861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

摘要

在现代空调系统的冷凝器、热泵、海水淡化系统的蒸发器和电厂的加热器中,蒸汽的冷凝过程主要在水平管道和通道内进行。在冷凝器中发生的传热过程对上述系统的整体能源效率有显著影响。本文对氟利昂R22、R406a和R407c在d = 17 mm的光滑平管内冷凝传热进行了实验研究,实验参数为:ts = 35-40℃,G = 10-100 kg/(m2s), x = 0.8-0.1, q = 5-50 kW/m2, ΔT = 4-14 K。采用厚壁法对不同凝结模式下的周向热通量和换热系数进行了独特的测量。可以推断,随着热流密度的增大,管内顶部冷凝膜厚度增大,导致换热量减小。在管内底部,热流密度的增大使换热系数增大,这是管内流体湍流流动的特征。得到的结果可以改进蒸汽冷凝有效换热系数的预测,该预测考虑了管内下部冷凝水流动对换热的影响。该方法对氟利昂R22、R134a、R123、R125、R32、R410a、丙烷、异丁烯、丙烯、二甲醚、二氧化碳和甲烷在分层流动条件下的冷凝实验数据进行了归纳,具有足够的精度(误差±30%)。使用这种方法设计利用此类流体的热交换器,将提高热能系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of effective heat transfer coefficients for vapour condensation inside horizontal tubes in stratified phase flow
In modern condensers of air conditioning systems, heat pumps, evaporators of seawater desalination systems, and heaters of power plants, the process of vapour condensation is carried out mainly inside the horizontal tubes and channels. Heat transfer processes occurring in condensers have a significant effect on the overall energy efficiency of the mentioned systems. In this paper, the experimental investigation of heat transfer during condensation of freons R22, R406a, and R407c in the plain smooth tube with d = 17 mm were carried out with the following parameters: ts = 35–40°C, G = 10–100 kg/(m2s), x = 0.8–0.1, q = 5–50 kW/m2, ΔT = 4–14 K. The unique measurements of circumferential heat fluxes and heat transfer coefficients were carried out with the thick wall method during different condensation modes. It can be inferred that with the increase of the heat flux, at the top part of the tube the thickness of the condensate film increases, which leads to the decrease in heat transfer. At the bottom of the tube, the increase in the heat flux enhances heat transfer coefficient, that is characteristic of the turbulent liquid flow in the tube. The obtained results allowed improving the prediction of effective heat transfer coefficients for vapour condensation, which takes into account the influence of condensate flow in the lower part of the tube on the heat transfer. This method generalises with sufficient accuracy (error ± 30%) the experimental data on condensation of freons R22, R134a, R123, R125, R32, R410a, propane, isobutene, propylene, dimethyl ether, carbon dioxide, and methane under stratified flow conditions. Using this method for designing heat exchangers, which utilise such types of fluids, will increase the efficiency of thermal energy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energetika
Energetika Energy-Energy Engineering and Power Technology
CiteScore
2.10
自引率
0.00%
发文量
0
期刊介绍: The journal publishes original scientific, review and problem papers in the following fields: power engineering economics, modelling of energy systems, their management and optimi­zation, target systems, environmental impacts of power engi­neering objects, nuclear energetics, its safety, radioactive waste disposal, renewable power sources, power engineering metro­logy, thermal physics, aerohydrodynamics, plasma technologies, combustion processes, hydrogen energetics, material studies and technologies, hydrology, hydroenergetics. All papers are re­viewed. Information is presented on the defended theses, vari­ous conferences, reviews, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信