Anxin Ding, Z. Jiao, Xiaoning Zhang, Yadong Dong, A. Kokhanovsky, Jing Guo, Hailan Jiang
{"title":"积雪地区MODIS MCD43A产品改进的实用方法","authors":"Anxin Ding, Z. Jiao, Xiaoning Zhang, Yadong Dong, A. Kokhanovsky, Jing Guo, Hailan Jiang","doi":"10.34133/remotesensing.0057","DOIUrl":null,"url":null,"abstract":"The MODerate Resolution Imaging Spectroradiometer (MODIS) MCD43A products have been extensively applied in the remote sensing field, but recent researchers have demonstrated that these products still had the potential to be further improved by using the latest development of the kernel-driven model [RossThick-LiSparseReciprocal-Snow (RTLSRS)] in snow-covered areas, since the MCD43A product algorithm [RossThick-LiSparseReciprocal (RTLSR)] needed to be improved for the accurate simulation of snow bidirectional reflectance distribution function (BRDF) signatures. In this paper, we proposed a practical approach to improve the MCD43A products, which used the Polarization and Directionality of the Earth's Reflectance (POLDER) observations and random forest algorithm to establish the relationship between the BRDF parameters (MCD43A1) estimated by the RTLSR and RTLSRS models. We applied this relationship to correct the MCD43A1 product and retrieve the corresponding albedo (MCD43A3) and nadir reflectance (MCD43A4). The results obtained highlight several aspects: (a) The proposed approach can perform well in correcting BRDF parameters [root mean square error (RMSE) = ~0.04]. (b) The corrected BRDF parameters were then used to retrieve snow albedo, which matched up quite well with the results of the RTLSRS model. (c) Finally, the snow albedo retrieved by the proposed approach was assessed using ground-based albedo observations. Results indicated that the retrieved snow albedo showed a higher accuracy as compared to the station measurements (RMSE = 0.055, bias = 0.005), which was better than the results of the MODIS albedo product (RMSE = 0.064, bias = −0.018), especially at large angles. These results demonstrated that this proposed approach presented the potential to further improve the MCD43A products in snow-covered areas.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Practical Approach to Improve the MODIS MCD43A Products in Snow-Covered Areas\",\"authors\":\"Anxin Ding, Z. Jiao, Xiaoning Zhang, Yadong Dong, A. Kokhanovsky, Jing Guo, Hailan Jiang\",\"doi\":\"10.34133/remotesensing.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MODerate Resolution Imaging Spectroradiometer (MODIS) MCD43A products have been extensively applied in the remote sensing field, but recent researchers have demonstrated that these products still had the potential to be further improved by using the latest development of the kernel-driven model [RossThick-LiSparseReciprocal-Snow (RTLSRS)] in snow-covered areas, since the MCD43A product algorithm [RossThick-LiSparseReciprocal (RTLSR)] needed to be improved for the accurate simulation of snow bidirectional reflectance distribution function (BRDF) signatures. In this paper, we proposed a practical approach to improve the MCD43A products, which used the Polarization and Directionality of the Earth's Reflectance (POLDER) observations and random forest algorithm to establish the relationship between the BRDF parameters (MCD43A1) estimated by the RTLSR and RTLSRS models. We applied this relationship to correct the MCD43A1 product and retrieve the corresponding albedo (MCD43A3) and nadir reflectance (MCD43A4). The results obtained highlight several aspects: (a) The proposed approach can perform well in correcting BRDF parameters [root mean square error (RMSE) = ~0.04]. (b) The corrected BRDF parameters were then used to retrieve snow albedo, which matched up quite well with the results of the RTLSRS model. (c) Finally, the snow albedo retrieved by the proposed approach was assessed using ground-based albedo observations. Results indicated that the retrieved snow albedo showed a higher accuracy as compared to the station measurements (RMSE = 0.055, bias = 0.005), which was better than the results of the MODIS albedo product (RMSE = 0.064, bias = −0.018), especially at large angles. These results demonstrated that this proposed approach presented the potential to further improve the MCD43A products in snow-covered areas.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/remotesensing.0057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/remotesensing.0057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Practical Approach to Improve the MODIS MCD43A Products in Snow-Covered Areas
The MODerate Resolution Imaging Spectroradiometer (MODIS) MCD43A products have been extensively applied in the remote sensing field, but recent researchers have demonstrated that these products still had the potential to be further improved by using the latest development of the kernel-driven model [RossThick-LiSparseReciprocal-Snow (RTLSRS)] in snow-covered areas, since the MCD43A product algorithm [RossThick-LiSparseReciprocal (RTLSR)] needed to be improved for the accurate simulation of snow bidirectional reflectance distribution function (BRDF) signatures. In this paper, we proposed a practical approach to improve the MCD43A products, which used the Polarization and Directionality of the Earth's Reflectance (POLDER) observations and random forest algorithm to establish the relationship between the BRDF parameters (MCD43A1) estimated by the RTLSR and RTLSRS models. We applied this relationship to correct the MCD43A1 product and retrieve the corresponding albedo (MCD43A3) and nadir reflectance (MCD43A4). The results obtained highlight several aspects: (a) The proposed approach can perform well in correcting BRDF parameters [root mean square error (RMSE) = ~0.04]. (b) The corrected BRDF parameters were then used to retrieve snow albedo, which matched up quite well with the results of the RTLSRS model. (c) Finally, the snow albedo retrieved by the proposed approach was assessed using ground-based albedo observations. Results indicated that the retrieved snow albedo showed a higher accuracy as compared to the station measurements (RMSE = 0.055, bias = 0.005), which was better than the results of the MODIS albedo product (RMSE = 0.064, bias = −0.018), especially at large angles. These results demonstrated that this proposed approach presented the potential to further improve the MCD43A products in snow-covered areas.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.