平均场线性二次最优控制问题中离散反馈控制的收敛速率

Q3 Mathematics
Yanqing Wang
{"title":"平均场线性二次最优控制问题中离散反馈控制的收敛速率","authors":"Yanqing Wang","doi":"10.1360/scm-2021-0663","DOIUrl":null,"url":null,"abstract":"In this work, we propose a feedback control based temporal discretization for linear quadratic optimal control problems (LQ problems) governed by controlled mean-field stochastic differential equations. We firstly decompose the original problem into two problems: a stochastic LQ problem and a deterministic one. Secondly, we discretize both LQ problems one after another relying on Riccati equations and control's feedback representations. Then, we prove the convergence rates for the proposed discretization and present an effective algorithm. Finally, a numerical example is provided to support the theoretical finding.","PeriodicalId":36277,"journal":{"name":"中国科学:数学","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence rates of a discrete feedback control arising in mean-field linear quadraticoptimal control problems\",\"authors\":\"Yanqing Wang\",\"doi\":\"10.1360/scm-2021-0663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a feedback control based temporal discretization for linear quadratic optimal control problems (LQ problems) governed by controlled mean-field stochastic differential equations. We firstly decompose the original problem into two problems: a stochastic LQ problem and a deterministic one. Secondly, we discretize both LQ problems one after another relying on Riccati equations and control's feedback representations. Then, we prove the convergence rates for the proposed discretization and present an effective algorithm. Finally, a numerical example is provided to support the theoretical finding.\",\"PeriodicalId\":36277,\"journal\":{\"name\":\"中国科学:数学\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国科学:数学\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1360/scm-2021-0663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国科学:数学","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1360/scm-2021-0663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence rates of a discrete feedback control arising in mean-field linear quadraticoptimal control problems
In this work, we propose a feedback control based temporal discretization for linear quadratic optimal control problems (LQ problems) governed by controlled mean-field stochastic differential equations. We firstly decompose the original problem into two problems: a stochastic LQ problem and a deterministic one. Secondly, we discretize both LQ problems one after another relying on Riccati equations and control's feedback representations. Then, we prove the convergence rates for the proposed discretization and present an effective algorithm. Finally, a numerical example is provided to support the theoretical finding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国科学:数学
中国科学:数学 Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
6663
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信