基于卷积神经网络的传动轴振动响应建模与预测研究

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Xin Shen, Qianwen Huang, Ge Xiong
{"title":"基于卷积神经网络的传动轴振动响应建模与预测研究","authors":"Xin Shen, Qianwen Huang, Ge Xiong","doi":"10.5194/ms-13-485-2022","DOIUrl":null,"url":null,"abstract":"Abstract. It is crucial to detect the working state of a propeller shaft in real time, as its vibration affects the safety of the marine propulsion system directly. With the difficulty of obtaining an accurate signal due to the particularity of propeller shaft, a suitable method for estimating the vibration response of propeller shaft is proposed in this paper. The nonlinear relationship of vibration signals between the bearing and propeller shaft is obtained by fitting the existing data sets with various neural networks. The feasibility of the proposed method is demonstrated through a prediction of shaft vibration on the basis of a shaft experimental platform. Moreover, the optimal model of the neural network is obtained by comparing the influence of different hyper parameters and network models. The results indicate a prediction accuracy of over 95 % of the shaft vibration in the lower frequency band for a convolutional neural network. Therefore, the research provides an easier maintenance method for predicting the real-time monitoring for the vibration response of the propeller shaft.\n","PeriodicalId":18413,"journal":{"name":"Mechanical Sciences","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling and predictive investigation on the vibration response of a propeller shaft based on a convolutional neural network\",\"authors\":\"Xin Shen, Qianwen Huang, Ge Xiong\",\"doi\":\"10.5194/ms-13-485-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. It is crucial to detect the working state of a propeller shaft in real time, as its vibration affects the safety of the marine propulsion system directly. With the difficulty of obtaining an accurate signal due to the particularity of propeller shaft, a suitable method for estimating the vibration response of propeller shaft is proposed in this paper. The nonlinear relationship of vibration signals between the bearing and propeller shaft is obtained by fitting the existing data sets with various neural networks. The feasibility of the proposed method is demonstrated through a prediction of shaft vibration on the basis of a shaft experimental platform. Moreover, the optimal model of the neural network is obtained by comparing the influence of different hyper parameters and network models. The results indicate a prediction accuracy of over 95 % of the shaft vibration in the lower frequency band for a convolutional neural network. Therefore, the research provides an easier maintenance method for predicting the real-time monitoring for the vibration response of the propeller shaft.\\n\",\"PeriodicalId\":18413,\"journal\":{\"name\":\"Mechanical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5194/ms-13-485-2022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5194/ms-13-485-2022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要实时检测传动轴的工作状态至关重要,因为传动轴的振动直接影响船舶推进系统的安全。由于传动轴的特殊性,难以获得准确的信号,本文提出了一种合适的传动轴振动响应估计方法。利用各种神经网络对现有的数据集进行拟合,得到了轴承和传动轴之间振动信号的非线性关系。通过在轴实验平台上进行的轴振动预测,验证了该方法的可行性。此外,通过比较不同超参数和网络模型的影响,得到了神经网络的最优模型。结果表明,预测精度超过95 % 用于卷积神经网络的低频带中的轴振动。因此,该研究为预测传动轴振动响应的实时监测提供了一种更容易维护的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and predictive investigation on the vibration response of a propeller shaft based on a convolutional neural network
Abstract. It is crucial to detect the working state of a propeller shaft in real time, as its vibration affects the safety of the marine propulsion system directly. With the difficulty of obtaining an accurate signal due to the particularity of propeller shaft, a suitable method for estimating the vibration response of propeller shaft is proposed in this paper. The nonlinear relationship of vibration signals between the bearing and propeller shaft is obtained by fitting the existing data sets with various neural networks. The feasibility of the proposed method is demonstrated through a prediction of shaft vibration on the basis of a shaft experimental platform. Moreover, the optimal model of the neural network is obtained by comparing the influence of different hyper parameters and network models. The results indicate a prediction accuracy of over 95 % of the shaft vibration in the lower frequency band for a convolutional neural network. Therefore, the research provides an easier maintenance method for predicting the real-time monitoring for the vibration response of the propeller shaft.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanical Sciences
Mechanical Sciences ENGINEERING, MECHANICAL-
CiteScore
2.20
自引率
7.10%
发文量
74
审稿时长
29 weeks
期刊介绍: The journal Mechanical Sciences (MS) is an international forum for the dissemination of original contributions in the field of theoretical and applied mechanics. Its main ambition is to provide a platform for young researchers to build up a portfolio of high-quality peer-reviewed journal articles. To this end we employ an open-access publication model with moderate page charges, aiming for fast publication and great citation opportunities. A large board of reputable editors makes this possible. The journal will also publish special issues dealing with the current state of the art and future research directions in mechanical sciences. While in-depth research articles are preferred, review articles and short communications will also be considered. We intend and believe to provide a means of publication which complements established journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信