丁酸钠对大鼠肝毒性的改善

Q4 Veterinary
Rusul Mowaffaq Ahmed, Amira K Mohammed
{"title":"丁酸钠对大鼠肝毒性的改善","authors":"Rusul Mowaffaq Ahmed, Amira K Mohammed","doi":"10.54203/scil.2022.wvj41","DOIUrl":null,"url":null,"abstract":"Lead poisoning is a serious environmental issue with life-threatening consequences. Lead poisoning increases the risk of cancers, gastrointestinal disorders, hepatotoxicity, central nervous system diseases, nephropathy, and cardiovascular diseases in animals and humans. The current study aimed to investigate the effect of sodium butyrate, as an antioxidant, on protecting female adult rats from the harmful effects of lead acetate. A total of 40 adult female albino rats were divided randomly into four equal groups. The first group dealt as the control. The second group received lead acetate at a dose of 200 mg/kg daily orally. The third group received lead acetate at a dose of 50 mg/kg daily orally, and the fourth group received both sodium butyrate and lead acetate orally/day for 35 days. The result indicated that sodium butyrate reduced the concentration of liver enzymes (ALT, AST, and ALP) which were elevated by lead acetate poising. Moreover, sodium butyrate ameliorates the redux status by decreasing malondialdehyde and increasing total antioxidant capacity. Additionally, sodium butyrate-treated rats showed significant alterations in the expression of peroxisome proliferator-activated receptor gamma and interleukin -10 genes. In conclusion, this study reveals an unrecognized role for peroxisome proliferator-activated receptor gamma and Interleukin-10 signaling after sodium butyrate treatment in regulating the immunopathology that occurs during lead acetate poising.","PeriodicalId":52153,"journal":{"name":"World''s Veterinary Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Amelioration of Hepatotoxicity by Sodium Butyrate Administration in Rats\",\"authors\":\"Rusul Mowaffaq Ahmed, Amira K Mohammed\",\"doi\":\"10.54203/scil.2022.wvj41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lead poisoning is a serious environmental issue with life-threatening consequences. Lead poisoning increases the risk of cancers, gastrointestinal disorders, hepatotoxicity, central nervous system diseases, nephropathy, and cardiovascular diseases in animals and humans. The current study aimed to investigate the effect of sodium butyrate, as an antioxidant, on protecting female adult rats from the harmful effects of lead acetate. A total of 40 adult female albino rats were divided randomly into four equal groups. The first group dealt as the control. The second group received lead acetate at a dose of 200 mg/kg daily orally. The third group received lead acetate at a dose of 50 mg/kg daily orally, and the fourth group received both sodium butyrate and lead acetate orally/day for 35 days. The result indicated that sodium butyrate reduced the concentration of liver enzymes (ALT, AST, and ALP) which were elevated by lead acetate poising. Moreover, sodium butyrate ameliorates the redux status by decreasing malondialdehyde and increasing total antioxidant capacity. Additionally, sodium butyrate-treated rats showed significant alterations in the expression of peroxisome proliferator-activated receptor gamma and interleukin -10 genes. In conclusion, this study reveals an unrecognized role for peroxisome proliferator-activated receptor gamma and Interleukin-10 signaling after sodium butyrate treatment in regulating the immunopathology that occurs during lead acetate poising.\",\"PeriodicalId\":52153,\"journal\":{\"name\":\"World''s Veterinary Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World''s Veterinary Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54203/scil.2022.wvj41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World''s Veterinary Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54203/scil.2022.wvj41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
引用次数: 1

摘要

铅中毒是一个严重的环境问题,会造成危及生命的后果。铅中毒会增加动物和人类患癌症、胃肠道疾病、肝毒性、中枢神经系统疾病、肾病和心血管疾病的风险。本研究旨在研究丁酸钠作为一种抗氧化剂在保护雌性成年大鼠免受醋酸铅有害影响方面的作用。将40只成年雌性白化大鼠随机分为四组。第一组作为对照。第二组每天口服醋酸铅200mg/kg。第三组每天口服50 mg/kg的醋酸铅,第四组每天口服丁酸钠和醋酸铅,持续35天。结果表明,丁酸钠降低了因醋酸铅中毒而升高的肝酶(ALT、AST和ALP)的浓度。此外,丁酸钠通过降低丙二醛和提高总抗氧化能力来改善还原状态。此外,丁酸钠处理的大鼠过氧化物酶体增殖物激活受体γ和白细胞介素-10基因的表达发生了显著变化。总之,本研究揭示了丁酸钠治疗后过氧化物酶体增殖物激活受体γ和白细胞介素-10信号在调节醋酸铅中毒期间发生的免疫病理学中的未被认识的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amelioration of Hepatotoxicity by Sodium Butyrate Administration in Rats
Lead poisoning is a serious environmental issue with life-threatening consequences. Lead poisoning increases the risk of cancers, gastrointestinal disorders, hepatotoxicity, central nervous system diseases, nephropathy, and cardiovascular diseases in animals and humans. The current study aimed to investigate the effect of sodium butyrate, as an antioxidant, on protecting female adult rats from the harmful effects of lead acetate. A total of 40 adult female albino rats were divided randomly into four equal groups. The first group dealt as the control. The second group received lead acetate at a dose of 200 mg/kg daily orally. The third group received lead acetate at a dose of 50 mg/kg daily orally, and the fourth group received both sodium butyrate and lead acetate orally/day for 35 days. The result indicated that sodium butyrate reduced the concentration of liver enzymes (ALT, AST, and ALP) which were elevated by lead acetate poising. Moreover, sodium butyrate ameliorates the redux status by decreasing malondialdehyde and increasing total antioxidant capacity. Additionally, sodium butyrate-treated rats showed significant alterations in the expression of peroxisome proliferator-activated receptor gamma and interleukin -10 genes. In conclusion, this study reveals an unrecognized role for peroxisome proliferator-activated receptor gamma and Interleukin-10 signaling after sodium butyrate treatment in regulating the immunopathology that occurs during lead acetate poising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World''s Veterinary Journal
World''s Veterinary Journal Veterinary-Veterinary (all)
CiteScore
1.00
自引率
0.00%
发文量
43
期刊介绍: The World''s Veterinary Journal (ISSN 2322-4568) is an international, peer reviewed open access journal aims to publish the high quality material from veterinary scientists'' studies. All accepted articles are published Quarterly in full text on the Internet. WVJ publishes the results of original scientific researches, reviews, case reports and short communications, in all fields of veterinary science. In details, topics are: Behavior Environment and welfare Animal reproduction and production Parasitology Endocrinology Microbiology Immunology Pathology Pharmacology Epidemiology Molecular biology Immunogenetics Surgery Virology Physiology Vaccination Gynecology Exotic animals Animal diseases Radiology Ophthalmology Dermatology Chronic disease Anatomy Non-surgical pathology issues of small to large animals Cardiology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信