{"title":"编辑简介:走向机器人类学","authors":"M. Pedersen","doi":"10.1177/20539517231153803","DOIUrl":null,"url":null,"abstract":"Bringing together a motley crew of social scientists and data scientists, the aim of this special theme issue is to explore what an integration or even fusion between anthropology and data science might look like. Going beyond existing work on the complementarity between ‘thick’ qualitative and ‘big’ quantitative data, the ambition is to unsettle and push established disciplinary, methodological and epistemological boundaries by creatively and critically probing various computational methods for augmenting and automatizing the collection, processing and analysis of ethnographic data, and vice versa. Can ethnographic and other qualitative data and methods be integrated with natural language processing tools and other machine-learning techniques, and if so, to what effect? Does the rise of data science allow for the realization of Levi-Strauss’ old dream of a computational structuralism, and even if so, should it? Might one even go as far as saying that computers are now becoming agents of social scientific analysis or even thinking: are we about to witness the birth of distinctly anthropological forms of artificial intelligence? By exploring these questions, the hope is not only to introduce scholars and students to computational anthropological methods, but also to disrupt predominant norms and assumptions among computational social scientists and data science writ large.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Editorial introduction: Towards a machinic anthropology\",\"authors\":\"M. Pedersen\",\"doi\":\"10.1177/20539517231153803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bringing together a motley crew of social scientists and data scientists, the aim of this special theme issue is to explore what an integration or even fusion between anthropology and data science might look like. Going beyond existing work on the complementarity between ‘thick’ qualitative and ‘big’ quantitative data, the ambition is to unsettle and push established disciplinary, methodological and epistemological boundaries by creatively and critically probing various computational methods for augmenting and automatizing the collection, processing and analysis of ethnographic data, and vice versa. Can ethnographic and other qualitative data and methods be integrated with natural language processing tools and other machine-learning techniques, and if so, to what effect? Does the rise of data science allow for the realization of Levi-Strauss’ old dream of a computational structuralism, and even if so, should it? Might one even go as far as saying that computers are now becoming agents of social scientific analysis or even thinking: are we about to witness the birth of distinctly anthropological forms of artificial intelligence? By exploring these questions, the hope is not only to introduce scholars and students to computational anthropological methods, but also to disrupt predominant norms and assumptions among computational social scientists and data science writ large.\",\"PeriodicalId\":47834,\"journal\":{\"name\":\"Big Data & Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data & Society\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/20539517231153803\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231153803","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
Editorial introduction: Towards a machinic anthropology
Bringing together a motley crew of social scientists and data scientists, the aim of this special theme issue is to explore what an integration or even fusion between anthropology and data science might look like. Going beyond existing work on the complementarity between ‘thick’ qualitative and ‘big’ quantitative data, the ambition is to unsettle and push established disciplinary, methodological and epistemological boundaries by creatively and critically probing various computational methods for augmenting and automatizing the collection, processing and analysis of ethnographic data, and vice versa. Can ethnographic and other qualitative data and methods be integrated with natural language processing tools and other machine-learning techniques, and if so, to what effect? Does the rise of data science allow for the realization of Levi-Strauss’ old dream of a computational structuralism, and even if so, should it? Might one even go as far as saying that computers are now becoming agents of social scientific analysis or even thinking: are we about to witness the birth of distinctly anthropological forms of artificial intelligence? By exploring these questions, the hope is not only to introduce scholars and students to computational anthropological methods, but also to disrupt predominant norms and assumptions among computational social scientists and data science writ large.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.