某些t-正则分区的算术性质

Pub Date : 2023-04-18 DOI:10.1007/s00026-023-00649-z
Rupam Barman, Ajit Singh, Gurinder Singh
{"title":"某些t-正则分区的算术性质","authors":"Rupam Barman,&nbsp;Ajit Singh,&nbsp;Gurinder Singh","doi":"10.1007/s00026-023-00649-z","DOIUrl":null,"url":null,"abstract":"<div><p>For a positive integer <span>\\(t\\ge 2\\)</span>, let <span>\\(b_{t}(n)\\)</span> denote the number of <i>t</i>-regular partitions of a nonnegative integer <i>n</i>. Motivated by some recent conjectures of Keith and Zanello, we establish infinite families of congruences modulo 2 for <span>\\(b_9(n)\\)</span> and <span>\\(b_{19}(n)\\)</span>. We prove some specific cases of two conjectures of Keith and Zanello on self-similarities of <span>\\(b_9(n)\\)</span> and <span>\\(b_{19}(n)\\)</span> modulo 2. For <span>\\(t\\in \\{6,10,14,15,18,20,22,26,27,28\\}\\)</span>, Keith and Zanello conjectured that there are no integers <span>\\(A&gt;0\\)</span> and <span>\\(B\\ge 0\\)</span> for which <span>\\(b_t(An+ B)\\equiv 0\\pmod 2\\)</span> for all <span>\\(n\\ge 0\\)</span>. We prove that, for any <span>\\(t\\ge 2\\)</span> and prime <span>\\(\\ell \\)</span>, there are infinitely many arithmetic progressions <span>\\(An+B\\)</span> for which <span>\\(\\sum _{n=0}^{\\infty }b_t(An+B)q^n\\not \\equiv 0 \\pmod {\\ell }\\)</span>. Next, we obtain quantitative estimates for the distributions of <span>\\(b_{6}(n), b_{10}(n)\\)</span> and <span>\\(b_{14}(n)\\)</span> modulo 2. We further study the odd densities of certain infinite families of eta-quotients related to the 7-regular and 13-regular partition functions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic Properties of Certain t-Regular Partitions\",\"authors\":\"Rupam Barman,&nbsp;Ajit Singh,&nbsp;Gurinder Singh\",\"doi\":\"10.1007/s00026-023-00649-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a positive integer <span>\\\\(t\\\\ge 2\\\\)</span>, let <span>\\\\(b_{t}(n)\\\\)</span> denote the number of <i>t</i>-regular partitions of a nonnegative integer <i>n</i>. Motivated by some recent conjectures of Keith and Zanello, we establish infinite families of congruences modulo 2 for <span>\\\\(b_9(n)\\\\)</span> and <span>\\\\(b_{19}(n)\\\\)</span>. We prove some specific cases of two conjectures of Keith and Zanello on self-similarities of <span>\\\\(b_9(n)\\\\)</span> and <span>\\\\(b_{19}(n)\\\\)</span> modulo 2. For <span>\\\\(t\\\\in \\\\{6,10,14,15,18,20,22,26,27,28\\\\}\\\\)</span>, Keith and Zanello conjectured that there are no integers <span>\\\\(A&gt;0\\\\)</span> and <span>\\\\(B\\\\ge 0\\\\)</span> for which <span>\\\\(b_t(An+ B)\\\\equiv 0\\\\pmod 2\\\\)</span> for all <span>\\\\(n\\\\ge 0\\\\)</span>. We prove that, for any <span>\\\\(t\\\\ge 2\\\\)</span> and prime <span>\\\\(\\\\ell \\\\)</span>, there are infinitely many arithmetic progressions <span>\\\\(An+B\\\\)</span> for which <span>\\\\(\\\\sum _{n=0}^{\\\\infty }b_t(An+B)q^n\\\\not \\\\equiv 0 \\\\pmod {\\\\ell }\\\\)</span>. Next, we obtain quantitative estimates for the distributions of <span>\\\\(b_{6}(n), b_{10}(n)\\\\)</span> and <span>\\\\(b_{14}(n)\\\\)</span> modulo 2. We further study the odd densities of certain infinite families of eta-quotients related to the 7-regular and 13-regular partition functions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00649-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00649-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个正整数\(t\ge 2\), 让\(b_{t}(n)\)表示一个非负整数 n 的 t-regular partitions 的个数。受 Keith 和 Zanello 最近的一些猜想的启发,我们为\(b_9(n)\) 和\(b_{19}(n)\)建立了 modulo 2 的无限全等族。我们证明了 Keith 和 Zanello 关于 \(b_9(n)\) 和 \(b_{19}(n)\) modulo 2 的自相似性的两个猜想的一些具体情况。对于 \(t\in {6,10,14,15,18,20,22,26,27,28}/),基思和扎内罗猜想,对于所有的 \(n\ge 0\) ,不存在整数 \(A>0\) 和 \(B\ge 0\) 。我们证明,对于任意的(t\ge 2\ )和素数(ell\),有无限多的算术级数(\(sum _{n=0}^{\infty }b_t(An+B)q^not (equiv 0 (pmod {\ell }\ ))。接下来,我们得到了 \(b_{6}(n), b_{10}(n)\) 和 \(b_{14}(n)\) modulo 2 分布的定量估计。我们进一步研究了与 7-regular 和 13-regular 分割函数相关的某些无穷等差数列的奇数密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Arithmetic Properties of Certain t-Regular Partitions

For a positive integer \(t\ge 2\), let \(b_{t}(n)\) denote the number of t-regular partitions of a nonnegative integer n. Motivated by some recent conjectures of Keith and Zanello, we establish infinite families of congruences modulo 2 for \(b_9(n)\) and \(b_{19}(n)\). We prove some specific cases of two conjectures of Keith and Zanello on self-similarities of \(b_9(n)\) and \(b_{19}(n)\) modulo 2. For \(t\in \{6,10,14,15,18,20,22,26,27,28\}\), Keith and Zanello conjectured that there are no integers \(A>0\) and \(B\ge 0\) for which \(b_t(An+ B)\equiv 0\pmod 2\) for all \(n\ge 0\). We prove that, for any \(t\ge 2\) and prime \(\ell \), there are infinitely many arithmetic progressions \(An+B\) for which \(\sum _{n=0}^{\infty }b_t(An+B)q^n\not \equiv 0 \pmod {\ell }\). Next, we obtain quantitative estimates for the distributions of \(b_{6}(n), b_{10}(n)\) and \(b_{14}(n)\) modulo 2. We further study the odd densities of certain infinite families of eta-quotients related to the 7-regular and 13-regular partition functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信