Ramanujan复合体和经典群的截断

IF 1.1 3区 数学 Q1 MATHEMATICS
Michael Chapman, Ori Parzanchevski
{"title":"Ramanujan复合体和经典群的截断","authors":"Michael Chapman, Ori Parzanchevski","doi":"10.4171/CMH/537","DOIUrl":null,"url":null,"abstract":"The total-variation cutoff phenomenon has been conjectured to hold for simple random walk on all transitive expanders. However, very little is actually known regarding this conjecture, and cutoff on sparse graphs in general. In this paper we establish total-variation cutoff for simple random walk on Ramanujan complexes of type $\\tilde{A}_{d}$ ($d\\geq1$). As a result, we obtain explicit generators for the finite classical groups $PGL_{n}(\\mathbb{F}_{q})$ for which the associated Cayley graphs exhibit total-variation cutoff.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cutoff on Ramanujan complexes and classical groups\",\"authors\":\"Michael Chapman, Ori Parzanchevski\",\"doi\":\"10.4171/CMH/537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total-variation cutoff phenomenon has been conjectured to hold for simple random walk on all transitive expanders. However, very little is actually known regarding this conjecture, and cutoff on sparse graphs in general. In this paper we establish total-variation cutoff for simple random walk on Ramanujan complexes of type $\\\\tilde{A}_{d}$ ($d\\\\geq1$). As a result, we obtain explicit generators for the finite classical groups $PGL_{n}(\\\\mathbb{F}_{q})$ for which the associated Cayley graphs exhibit total-variation cutoff.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/537\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/537","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

全变分截止现象已被推测适用于所有传递扩展器上的简单随机行走。然而,关于这个猜想,以及稀疏图上的截断,实际上知之甚少。在本文中,我们建立了$\tilde型Ramanujan复形上简单随机游动的全变分截断{A}_{d} $($d\geq1$)。结果,我们得到了有限经典群$PGL_{n}(\mathbb{F}_{q} )$,相关的Cayley图显示出总变化截止值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutoff on Ramanujan complexes and classical groups
The total-variation cutoff phenomenon has been conjectured to hold for simple random walk on all transitive expanders. However, very little is actually known regarding this conjecture, and cutoff on sparse graphs in general. In this paper we establish total-variation cutoff for simple random walk on Ramanujan complexes of type $\tilde{A}_{d}$ ($d\geq1$). As a result, we obtain explicit generators for the finite classical groups $PGL_{n}(\mathbb{F}_{q})$ for which the associated Cayley graphs exhibit total-variation cutoff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信