一类具有伯努利反馈的两类一般异构服务的队列

IF 0.1 Q4 MATHEMATICS
Snigdhayan Mahanta, G. Choudhury
{"title":"一类具有伯努利反馈的两类一般异构服务的队列","authors":"Snigdhayan Mahanta, G. Choudhury","doi":"10.1080/23311835.2018.1433577","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the steady-state behavior of an M/G/1 queue with two types of general heterogeneous service to the arriving customers and Bernoulli feedback. We first derive the steady-state probability generating functions for the queue size distributions at a random epoch as well as at a departure epoch. Next, we derive the mean queue size at random epoch and the mean waiting time. Also, we obtain the mean busy period of this model and discuss some important particular cases.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311835.2018.1433577","citationCount":"1","resultStr":"{\"title\":\"On queue with two types of general heterogeneous service with Bernoulli feedback\",\"authors\":\"Snigdhayan Mahanta, G. Choudhury\",\"doi\":\"10.1080/23311835.2018.1433577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper deals with the steady-state behavior of an M/G/1 queue with two types of general heterogeneous service to the arriving customers and Bernoulli feedback. We first derive the steady-state probability generating functions for the queue size distributions at a random epoch as well as at a departure epoch. Next, we derive the mean queue size at random epoch and the mean waiting time. Also, we obtain the mean busy period of this model and discuss some important particular cases.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311835.2018.1433577\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311835.2018.1433577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311835.2018.1433577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了具有两类一般异构服务和伯努利反馈的M/G/1队列的稳态行为。首先导出了随机时刻和出发时刻队列大小分布的稳态概率生成函数。其次,我们导出了随机epoch的平均队列大小和平均等待时间。得到了该模型的平均繁忙期,并讨论了一些重要的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On queue with two types of general heterogeneous service with Bernoulli feedback
Abstract This paper deals with the steady-state behavior of an M/G/1 queue with two types of general heterogeneous service to the arriving customers and Bernoulli feedback. We first derive the steady-state probability generating functions for the queue size distributions at a random epoch as well as at a departure epoch. Next, we derive the mean queue size at random epoch and the mean waiting time. Also, we obtain the mean busy period of this model and discuss some important particular cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信