G. Yu, Xiaoyun Wen, C. Du, Ling-Yun Wang, Shao-Jie Zhu
{"title":"分段智能隔震轴承的设计与性能研究","authors":"G. Yu, Xiaoyun Wen, C. Du, Ling-Yun Wang, Shao-Jie Zhu","doi":"10.1080/19475411.2021.2004257","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, a novel type of isolator, named segmented intelligent isolation bearing (SIIB), is designed and manufactured, which can meet the requirements of seismic fortification under three seismic intensities, i.e. frequent intensity, basic intensity, and rare intensity. A theoretical formula for the output of the SIIB is established to provide a basis for the determination of the size of the SIIB. MRE and STMP used in SIIB were prepared, of which the changes of shear storage modulus and damping factor with the magnetic field under different strain are analyzed. The mechanical properties of the SIIB under small displacement, medium displacement, and large displacement are tested, respectively, and the hysteretic characteristics of force–displacement are analyzed. The dynamic mechanical model combining the rheological model, phenomenological model, and bilinear restoring force model is established to represent the behavior of the SIIB. The results showed that the theoretical results agree well with the experimental results, and the model can significantly reflect the dynamic characteristics of SIIB. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"12 1","pages":"511 - 532"},"PeriodicalIF":4.5000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and performance study of a segmented intelligent isolation bearing\",\"authors\":\"G. Yu, Xiaoyun Wen, C. Du, Ling-Yun Wang, Shao-Jie Zhu\",\"doi\":\"10.1080/19475411.2021.2004257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, a novel type of isolator, named segmented intelligent isolation bearing (SIIB), is designed and manufactured, which can meet the requirements of seismic fortification under three seismic intensities, i.e. frequent intensity, basic intensity, and rare intensity. A theoretical formula for the output of the SIIB is established to provide a basis for the determination of the size of the SIIB. MRE and STMP used in SIIB were prepared, of which the changes of shear storage modulus and damping factor with the magnetic field under different strain are analyzed. The mechanical properties of the SIIB under small displacement, medium displacement, and large displacement are tested, respectively, and the hysteretic characteristics of force–displacement are analyzed. The dynamic mechanical model combining the rheological model, phenomenological model, and bilinear restoring force model is established to represent the behavior of the SIIB. The results showed that the theoretical results agree well with the experimental results, and the model can significantly reflect the dynamic characteristics of SIIB. Graphical abstract\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\"12 1\",\"pages\":\"511 - 532\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2021.2004257\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2021.2004257","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and performance study of a segmented intelligent isolation bearing
ABSTRACT In this paper, a novel type of isolator, named segmented intelligent isolation bearing (SIIB), is designed and manufactured, which can meet the requirements of seismic fortification under three seismic intensities, i.e. frequent intensity, basic intensity, and rare intensity. A theoretical formula for the output of the SIIB is established to provide a basis for the determination of the size of the SIIB. MRE and STMP used in SIIB were prepared, of which the changes of shear storage modulus and damping factor with the magnetic field under different strain are analyzed. The mechanical properties of the SIIB under small displacement, medium displacement, and large displacement are tested, respectively, and the hysteretic characteristics of force–displacement are analyzed. The dynamic mechanical model combining the rheological model, phenomenological model, and bilinear restoring force model is established to represent the behavior of the SIIB. The results showed that the theoretical results agree well with the experimental results, and the model can significantly reflect the dynamic characteristics of SIIB. Graphical abstract
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.