M. Christina, Céline Gire, M. Bakker, A. Leckie, J. Xue, P. Clinton, Z. Negrín-Pérez, J. R. ARÉVALO SIERRA, J. Domec, Maya Gonzalez
{"title":"普通金雀花群体在高温下的本地和入侵幼苗抗旱性","authors":"M. Christina, Céline Gire, M. Bakker, A. Leckie, J. Xue, P. Clinton, Z. Negrín-Pérez, J. R. ARÉVALO SIERRA, J. Domec, Maya Gonzalez","doi":"10.1093/jpe/rtac097","DOIUrl":null,"url":null,"abstract":"\n The assumption that climatic growing requirements of invasive species are conserved between their native and non-native environment is a key ecological issue in the evaluation of invasion risk. We conducted a growth chamber experiment to compare the effect of water regime and temperature on growth and mortality of native and invasive populations of common gorse seedlings (Ulex europeaus, L). Seeds were sampled from 20 populations from five areas from both native (continental France and Spain) and non-native areas (New Zealand, Canary and Reunion islands). The seedlings were grown over 36 days in two temperature treatments (ambient and elevated) combined with two water treatments (irrigated or droughted). The elevated temperature was defined as the highest temperature observed at the niche margin in the different countries. While elevated temperature increased seedlings growth, the drought treatment increased mortality rate and limited seedlings growth. Under elevated temperature and drought, native populations showed a greater mortality rate (53%) than invasive populations (16%). Invasive seedlings also showed higher above- and belowground development than native ones under these constrained climatic conditions. While phenotypic plasticity did not differ between native and invasive populations, the difference between populations in terms of total dry mass could be related to differences in the climate of origin (precipitation in particular). Assessing the importance of phenotypic changes between populations within invasive species is crucial to identify the margins of their climatic distribution range and to highlight areas where management efforts should be concentrated in order to limit its spread.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Native and invasive seedling drought-resistance under elevated temperature in common gorse populations\",\"authors\":\"M. Christina, Céline Gire, M. Bakker, A. Leckie, J. Xue, P. Clinton, Z. Negrín-Pérez, J. R. ARÉVALO SIERRA, J. Domec, Maya Gonzalez\",\"doi\":\"10.1093/jpe/rtac097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The assumption that climatic growing requirements of invasive species are conserved between their native and non-native environment is a key ecological issue in the evaluation of invasion risk. We conducted a growth chamber experiment to compare the effect of water regime and temperature on growth and mortality of native and invasive populations of common gorse seedlings (Ulex europeaus, L). Seeds were sampled from 20 populations from five areas from both native (continental France and Spain) and non-native areas (New Zealand, Canary and Reunion islands). The seedlings were grown over 36 days in two temperature treatments (ambient and elevated) combined with two water treatments (irrigated or droughted). The elevated temperature was defined as the highest temperature observed at the niche margin in the different countries. While elevated temperature increased seedlings growth, the drought treatment increased mortality rate and limited seedlings growth. Under elevated temperature and drought, native populations showed a greater mortality rate (53%) than invasive populations (16%). Invasive seedlings also showed higher above- and belowground development than native ones under these constrained climatic conditions. While phenotypic plasticity did not differ between native and invasive populations, the difference between populations in terms of total dry mass could be related to differences in the climate of origin (precipitation in particular). Assessing the importance of phenotypic changes between populations within invasive species is crucial to identify the margins of their climatic distribution range and to highlight areas where management efforts should be concentrated in order to limit its spread.\",\"PeriodicalId\":50085,\"journal\":{\"name\":\"Journal of Plant Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtac097\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac097","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Native and invasive seedling drought-resistance under elevated temperature in common gorse populations
The assumption that climatic growing requirements of invasive species are conserved between their native and non-native environment is a key ecological issue in the evaluation of invasion risk. We conducted a growth chamber experiment to compare the effect of water regime and temperature on growth and mortality of native and invasive populations of common gorse seedlings (Ulex europeaus, L). Seeds were sampled from 20 populations from five areas from both native (continental France and Spain) and non-native areas (New Zealand, Canary and Reunion islands). The seedlings were grown over 36 days in two temperature treatments (ambient and elevated) combined with two water treatments (irrigated or droughted). The elevated temperature was defined as the highest temperature observed at the niche margin in the different countries. While elevated temperature increased seedlings growth, the drought treatment increased mortality rate and limited seedlings growth. Under elevated temperature and drought, native populations showed a greater mortality rate (53%) than invasive populations (16%). Invasive seedlings also showed higher above- and belowground development than native ones under these constrained climatic conditions. While phenotypic plasticity did not differ between native and invasive populations, the difference between populations in terms of total dry mass could be related to differences in the climate of origin (precipitation in particular). Assessing the importance of phenotypic changes between populations within invasive species is crucial to identify the margins of their climatic distribution range and to highlight areas where management efforts should be concentrated in order to limit its spread.
期刊介绍:
Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.