{"title":"儿童精准诊断","authors":"Paul Dimitri","doi":"10.1017/pcm.2023.4","DOIUrl":null,"url":null,"abstract":"<p><p>Medical practice is transforming from a reactive to a pro-active and preventive discipline that is underpinned by precision medicine. The advances in technologies in such fields as genomics, proteomics, metabolomics, transcriptomics and artificial intelligence have resulted in a paradigm shift in our understanding of specific diseases in childhood, greatly enhanced by our ability to combine data from changes within cells to the impact of environmental and population changes. Diseases in children have been reclassified as we understand more about their genomic origin and their evolution. Genomic discoveries, additional 'omics' data and advances such as optical genome mapping have driven rapid improvements in the precision and speed of diagnoses of diseases in children and are now being incorporated into newborn screening, have improved targeted therapies in childhood and have supported the development of predictive biomarkers to assess therapeutic impact and determine prognosis in congenital and acquired diseases of childhood. New medical device technologies are facilitating data capture at a population level to support higher diagnostic accuracy and tailored therapies in children according to predicted population outcome, and digital ecosystems now tailor therapies and provide support for their specific needs. By capturing biological and environmental data as early as possible in childhood, we can understand factors that predict disease or maintain health and track changes across a more extensive longitudinal path. Data from multiple health and external sources over long-time periods starting from birth or even in the <i>in utero</i> environment will provide further clarity about how to sustain health and prevent or predict disease. In this respect, we will not only use data to diagnose disease, but precision diagnostics will aid the 'diagnosis of good health'. The principle of 'start early and change more' will thus underpin the value of applying a personalised medicine approach early in life.</p>","PeriodicalId":72491,"journal":{"name":"Cambridge prisms, Precision medicine","volume":" ","pages":"e17"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953773/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision diagnostics in children.\",\"authors\":\"Paul Dimitri\",\"doi\":\"10.1017/pcm.2023.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical practice is transforming from a reactive to a pro-active and preventive discipline that is underpinned by precision medicine. The advances in technologies in such fields as genomics, proteomics, metabolomics, transcriptomics and artificial intelligence have resulted in a paradigm shift in our understanding of specific diseases in childhood, greatly enhanced by our ability to combine data from changes within cells to the impact of environmental and population changes. Diseases in children have been reclassified as we understand more about their genomic origin and their evolution. Genomic discoveries, additional 'omics' data and advances such as optical genome mapping have driven rapid improvements in the precision and speed of diagnoses of diseases in children and are now being incorporated into newborn screening, have improved targeted therapies in childhood and have supported the development of predictive biomarkers to assess therapeutic impact and determine prognosis in congenital and acquired diseases of childhood. New medical device technologies are facilitating data capture at a population level to support higher diagnostic accuracy and tailored therapies in children according to predicted population outcome, and digital ecosystems now tailor therapies and provide support for their specific needs. By capturing biological and environmental data as early as possible in childhood, we can understand factors that predict disease or maintain health and track changes across a more extensive longitudinal path. Data from multiple health and external sources over long-time periods starting from birth or even in the <i>in utero</i> environment will provide further clarity about how to sustain health and prevent or predict disease. In this respect, we will not only use data to diagnose disease, but precision diagnostics will aid the 'diagnosis of good health'. The principle of 'start early and change more' will thus underpin the value of applying a personalised medicine approach early in life.</p>\",\"PeriodicalId\":72491,\"journal\":{\"name\":\"Cambridge prisms, Precision medicine\",\"volume\":\" \",\"pages\":\"e17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953773/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge prisms, Precision medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/pcm.2023.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge prisms, Precision medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pcm.2023.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Medical practice is transforming from a reactive to a pro-active and preventive discipline that is underpinned by precision medicine. The advances in technologies in such fields as genomics, proteomics, metabolomics, transcriptomics and artificial intelligence have resulted in a paradigm shift in our understanding of specific diseases in childhood, greatly enhanced by our ability to combine data from changes within cells to the impact of environmental and population changes. Diseases in children have been reclassified as we understand more about their genomic origin and their evolution. Genomic discoveries, additional 'omics' data and advances such as optical genome mapping have driven rapid improvements in the precision and speed of diagnoses of diseases in children and are now being incorporated into newborn screening, have improved targeted therapies in childhood and have supported the development of predictive biomarkers to assess therapeutic impact and determine prognosis in congenital and acquired diseases of childhood. New medical device technologies are facilitating data capture at a population level to support higher diagnostic accuracy and tailored therapies in children according to predicted population outcome, and digital ecosystems now tailor therapies and provide support for their specific needs. By capturing biological and environmental data as early as possible in childhood, we can understand factors that predict disease or maintain health and track changes across a more extensive longitudinal path. Data from multiple health and external sources over long-time periods starting from birth or even in the in utero environment will provide further clarity about how to sustain health and prevent or predict disease. In this respect, we will not only use data to diagnose disease, but precision diagnostics will aid the 'diagnosis of good health'. The principle of 'start early and change more' will thus underpin the value of applying a personalised medicine approach early in life.