{"title":"实验生物化学的范式转变:生物分子物理参数的先验估计","authors":"K. Kulikov, T. Koshlan, A. P. Golovitsky","doi":"10.1142/s1793048023500017","DOIUrl":null,"url":null,"abstract":"This paper proposes a new paradigm for the biophysical concept of measuring the affinity of molecular complexes, based on a matrix representation of biological interactions and subsequent numerical analysis of the stability of this matrix. Our numerical criterion of stability (lg(cond([Formula: see text]))) correlates well with experimental values such as [Formula: see text] and IC[Formula: see text] as well as with experimental data of aggregation kinetics in studies of amyloid peptides. The main goal of this work is to reduce the cost of biochemical experiments by obtaining preliminary information on the interaction of chemical compounds. The paper also presents our numerical calculations in comparison with a large amount of experimental data on the examples of binding of small chemical molecules gefitinib, erlotinib, imatinib, naquatinib, and CO-1686 with proteins, protein–peptide interactions of the Bcl-2 protein family, antibody–antigen CD20–rituximab, and aggregation of amyloid peptides. The description of the software package that implements the presented algorithm is given on the website: https://binomlabs.com/ .","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Paradigm Shift in Experimental Biochemistry: A Priori Estimation of Physical Parameters of Biomolecules\",\"authors\":\"K. Kulikov, T. Koshlan, A. P. Golovitsky\",\"doi\":\"10.1142/s1793048023500017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new paradigm for the biophysical concept of measuring the affinity of molecular complexes, based on a matrix representation of biological interactions and subsequent numerical analysis of the stability of this matrix. Our numerical criterion of stability (lg(cond([Formula: see text]))) correlates well with experimental values such as [Formula: see text] and IC[Formula: see text] as well as with experimental data of aggregation kinetics in studies of amyloid peptides. The main goal of this work is to reduce the cost of biochemical experiments by obtaining preliminary information on the interaction of chemical compounds. The paper also presents our numerical calculations in comparison with a large amount of experimental data on the examples of binding of small chemical molecules gefitinib, erlotinib, imatinib, naquatinib, and CO-1686 with proteins, protein–peptide interactions of the Bcl-2 protein family, antibody–antigen CD20–rituximab, and aggregation of amyloid peptides. The description of the software package that implements the presented algorithm is given on the website: https://binomlabs.com/ .\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793048023500017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793048023500017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Paradigm Shift in Experimental Biochemistry: A Priori Estimation of Physical Parameters of Biomolecules
This paper proposes a new paradigm for the biophysical concept of measuring the affinity of molecular complexes, based on a matrix representation of biological interactions and subsequent numerical analysis of the stability of this matrix. Our numerical criterion of stability (lg(cond([Formula: see text]))) correlates well with experimental values such as [Formula: see text] and IC[Formula: see text] as well as with experimental data of aggregation kinetics in studies of amyloid peptides. The main goal of this work is to reduce the cost of biochemical experiments by obtaining preliminary information on the interaction of chemical compounds. The paper also presents our numerical calculations in comparison with a large amount of experimental data on the examples of binding of small chemical molecules gefitinib, erlotinib, imatinib, naquatinib, and CO-1686 with proteins, protein–peptide interactions of the Bcl-2 protein family, antibody–antigen CD20–rituximab, and aggregation of amyloid peptides. The description of the software package that implements the presented algorithm is given on the website: https://binomlabs.com/ .