采用辅助振动系统的齿轮齿条式WEC的设计与优化

IF 2.4 Q3 ENERGY & FUELS
Avikash Kaushik Chand, F. M. Nasrekani, K. Mamun, Sumesh Narayan
{"title":"采用辅助振动系统的齿轮齿条式WEC的设计与优化","authors":"Avikash Kaushik Chand, F. M. Nasrekani, K. Mamun, Sumesh Narayan","doi":"10.14710/ijred.2023.50462","DOIUrl":null,"url":null,"abstract":"Research on wave energy converters with Rack and pinion type Power Take-Off (PTO) has been increasing over the last few years. A few control methods are used to optimize the performance of the said Wave Energy Converters (WECs). This paper presents a novel auxiliary vibrating system that can be implemented to improve the power input to a wave energy converter with a rack and pinion type PTO in regular waves. The design of the WEC system includes a floater, a double rack and pinion arrangement, a vibrating system, and a Mechanical Motion Rectifier (MMR) consisting of two one-way bearings that can convert the bidirectional wave motion to a unidirectional rotation of the output shaft. Once the waves move the floater upwards, this compresses the vibrating system which absorbs some of the energy and then the vibrating system helps the floater return to its original position by releasing the stored energy. The vibrating system also serves as a control method for limiting rack movement, so the impact of the waves is not detrimental to the system. This article aims to approximate the optimized power input to the system and investigate whether the implementation of a novel vibrating system improves the system power input. Allowing the WEC’s natural frequency to reach the wave’s natural frequency is important as it allows for maximum power absorption. The use of vibration systems to tune the WEC’s natural frequency close to the waves’ is novel and serves as the main factor in choosing this research. The WEC was modeled as 2 spring mass damper systems. Then the characteristic equations of the systems were extracted from the equations of motion and solved analytically to obtain the responses. One-factor-at-a-time (OFAT) method together with two different algorithms (Genetic and Multi-Start algorithms) from MATLAB code were used to optimize the response. The optimized power input to the system was then approximated. For system one, the maximum amplitude of the response was seen at a system mass of 500 kg and stiffness in the range of 100","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of a Rack and Pinion Type WEC Using an Auxiliary Vibrating System\",\"authors\":\"Avikash Kaushik Chand, F. M. Nasrekani, K. Mamun, Sumesh Narayan\",\"doi\":\"10.14710/ijred.2023.50462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on wave energy converters with Rack and pinion type Power Take-Off (PTO) has been increasing over the last few years. A few control methods are used to optimize the performance of the said Wave Energy Converters (WECs). This paper presents a novel auxiliary vibrating system that can be implemented to improve the power input to a wave energy converter with a rack and pinion type PTO in regular waves. The design of the WEC system includes a floater, a double rack and pinion arrangement, a vibrating system, and a Mechanical Motion Rectifier (MMR) consisting of two one-way bearings that can convert the bidirectional wave motion to a unidirectional rotation of the output shaft. Once the waves move the floater upwards, this compresses the vibrating system which absorbs some of the energy and then the vibrating system helps the floater return to its original position by releasing the stored energy. The vibrating system also serves as a control method for limiting rack movement, so the impact of the waves is not detrimental to the system. This article aims to approximate the optimized power input to the system and investigate whether the implementation of a novel vibrating system improves the system power input. Allowing the WEC’s natural frequency to reach the wave’s natural frequency is important as it allows for maximum power absorption. The use of vibration systems to tune the WEC’s natural frequency close to the waves’ is novel and serves as the main factor in choosing this research. The WEC was modeled as 2 spring mass damper systems. Then the characteristic equations of the systems were extracted from the equations of motion and solved analytically to obtain the responses. One-factor-at-a-time (OFAT) method together with two different algorithms (Genetic and Multi-Start algorithms) from MATLAB code were used to optimize the response. The optimized power input to the system was then approximated. For system one, the maximum amplitude of the response was seen at a system mass of 500 kg and stiffness in the range of 100\",\"PeriodicalId\":44938,\"journal\":{\"name\":\"International Journal of Renewable Energy Development-IJRED\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Renewable Energy Development-IJRED\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/ijred.2023.50462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.50462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对齿轮齿条式动力输出(PTO)波能转换器的研究日益增多。使用一些控制方法来优化所述波能转换器(WEC)的性能。本文提出了一种新型的辅助振动系统,该系统可以在规则波中改善带齿条齿轮式PTO的波能转换器的功率输入。WEC系统的设计包括一个浮子、一个双齿条和小齿轮装置、一个振动系统和一个机械运动整流器(MMR),该整流器由两个单向轴承组成,可以将双向波动转换为输出轴的单向旋转。一旦波浪将浮子向上移动,就会压缩振动系统,从而吸收部分能量,然后振动系统通过释放储存的能量帮助浮子返回其原始位置。振动系统还用作限制齿条运动的控制方法,因此波浪的影响不会对系统造成损害。本文旨在近似系统的优化功率输入,并研究新型振动系统的实现是否提高了系统的功率输入。允许WEC的固有频率达到波浪的固有频率是重要的,因为它可以最大限度地吸收功率。使用振动系统将WEC的固有频率调谐到接近波浪的频率是新颖的,也是选择本研究的主要因素。WEC被建模为2个弹簧-质量阻尼器系统。然后从运动方程中提取系统的特征方程,并进行解析求解,得到系统的响应。一次一因素(OFAT)方法与MATLAB代码中的两种不同算法(遗传算法和多启动算法)一起用于优化响应。然后对系统的优化功率输入进行近似。对于系统1,在系统质量为500kg且刚度在100的范围内时,可以看到响应的最大振幅
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Optimization of a Rack and Pinion Type WEC Using an Auxiliary Vibrating System
Research on wave energy converters with Rack and pinion type Power Take-Off (PTO) has been increasing over the last few years. A few control methods are used to optimize the performance of the said Wave Energy Converters (WECs). This paper presents a novel auxiliary vibrating system that can be implemented to improve the power input to a wave energy converter with a rack and pinion type PTO in regular waves. The design of the WEC system includes a floater, a double rack and pinion arrangement, a vibrating system, and a Mechanical Motion Rectifier (MMR) consisting of two one-way bearings that can convert the bidirectional wave motion to a unidirectional rotation of the output shaft. Once the waves move the floater upwards, this compresses the vibrating system which absorbs some of the energy and then the vibrating system helps the floater return to its original position by releasing the stored energy. The vibrating system also serves as a control method for limiting rack movement, so the impact of the waves is not detrimental to the system. This article aims to approximate the optimized power input to the system and investigate whether the implementation of a novel vibrating system improves the system power input. Allowing the WEC’s natural frequency to reach the wave’s natural frequency is important as it allows for maximum power absorption. The use of vibration systems to tune the WEC’s natural frequency close to the waves’ is novel and serves as the main factor in choosing this research. The WEC was modeled as 2 spring mass damper systems. Then the characteristic equations of the systems were extracted from the equations of motion and solved analytically to obtain the responses. One-factor-at-a-time (OFAT) method together with two different algorithms (Genetic and Multi-Start algorithms) from MATLAB code were used to optimize the response. The optimized power input to the system was then approximated. For system one, the maximum amplitude of the response was seen at a system mass of 500 kg and stiffness in the range of 100
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信