{"title":"循环三次域上定义的阶点为$13$的椭圆曲线","authors":"Peter Bruin, M. Derickx, M. Stoll","doi":"10.7169/facm/1945","DOIUrl":null,"url":null,"abstract":"We show that there is essentially a unique elliptic curve E defined over a cubic Galois extension K of Q with a K-rational point of order 13 and such that E is not defined over Q.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic curves with a point of order $13$ defined over cyclic cubic fields\",\"authors\":\"Peter Bruin, M. Derickx, M. Stoll\",\"doi\":\"10.7169/facm/1945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there is essentially a unique elliptic curve E defined over a cubic Galois extension K of Q with a K-rational point of order 13 and such that E is not defined over Q.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Elliptic curves with a point of order $13$ defined over cyclic cubic fields
We show that there is essentially a unique elliptic curve E defined over a cubic Galois extension K of Q with a K-rational point of order 13 and such that E is not defined over Q.