Ariele Câmara, Ana de Almeida, David Caçador, João Oliveira
{"title":"文化遗产图像检测的自动化方法:综述和展望","authors":"Ariele Câmara, Ana de Almeida, David Caçador, João Oliveira","doi":"10.1002/arp.1883","DOIUrl":null,"url":null,"abstract":"<p>Remote sensing data covering large geographical areas can be easily accessed and are being acquired with greater frequency. The massive volume of data requires an automated image analysis system. By taking advantage of the increasing availability of data using computer vision, we can design specific systems to automate data analysis and detection of archaeological objects. In the past decade, there has been a rise in the use of automated methods to assist in the identification of archaeological sites in remote sensing imagery. These applications offer an important contribution to non-intrusive archaeological exploration, helping to reduce the traditional human workload and time by signalling areas with a higher probability of presenting archaeological sites for exploration. This survey describes the state of the art of existing automated image analysis methods in archaeology and highlights the improvements thus achieved in the detection of archaeological monuments and areas of interest in landscape-scale satellite and aerial imagery. It also presents a discussion of the benefits and limitations of automatic detection of archaeological structures, proposing new approaches and possibilities.</p>","PeriodicalId":55490,"journal":{"name":"Archaeological Prospection","volume":"30 2","pages":"153-169"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arp.1883","citationCount":"2","resultStr":"{\"title\":\"Automated methods for image detection of cultural heritage: Overviews and perspectives\",\"authors\":\"Ariele Câmara, Ana de Almeida, David Caçador, João Oliveira\",\"doi\":\"10.1002/arp.1883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Remote sensing data covering large geographical areas can be easily accessed and are being acquired with greater frequency. The massive volume of data requires an automated image analysis system. By taking advantage of the increasing availability of data using computer vision, we can design specific systems to automate data analysis and detection of archaeological objects. In the past decade, there has been a rise in the use of automated methods to assist in the identification of archaeological sites in remote sensing imagery. These applications offer an important contribution to non-intrusive archaeological exploration, helping to reduce the traditional human workload and time by signalling areas with a higher probability of presenting archaeological sites for exploration. This survey describes the state of the art of existing automated image analysis methods in archaeology and highlights the improvements thus achieved in the detection of archaeological monuments and areas of interest in landscape-scale satellite and aerial imagery. It also presents a discussion of the benefits and limitations of automatic detection of archaeological structures, proposing new approaches and possibilities.</p>\",\"PeriodicalId\":55490,\"journal\":{\"name\":\"Archaeological Prospection\",\"volume\":\"30 2\",\"pages\":\"153-169\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arp.1883\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaeological Prospection\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arp.1883\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeological Prospection","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arp.1883","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
Automated methods for image detection of cultural heritage: Overviews and perspectives
Remote sensing data covering large geographical areas can be easily accessed and are being acquired with greater frequency. The massive volume of data requires an automated image analysis system. By taking advantage of the increasing availability of data using computer vision, we can design specific systems to automate data analysis and detection of archaeological objects. In the past decade, there has been a rise in the use of automated methods to assist in the identification of archaeological sites in remote sensing imagery. These applications offer an important contribution to non-intrusive archaeological exploration, helping to reduce the traditional human workload and time by signalling areas with a higher probability of presenting archaeological sites for exploration. This survey describes the state of the art of existing automated image analysis methods in archaeology and highlights the improvements thus achieved in the detection of archaeological monuments and areas of interest in landscape-scale satellite and aerial imagery. It also presents a discussion of the benefits and limitations of automatic detection of archaeological structures, proposing new approaches and possibilities.
期刊介绍:
The scope of the Journal will be international, covering urban, rural and marine environments and the full range of underlying geology.
The Journal will contain articles relating to the use of a wide range of propecting techniques, including remote sensing (airborne and satellite), geophysical (e.g. resistivity, magnetometry) and geochemical (e.g. organic markers, soil phosphate). Reports and field evaluations of new techniques will be welcomed.
Contributions will be encouraged on the application of relevant software, including G.I.S. analysis, to the data derived from prospection techniques and cartographic analysis of early maps.
Reports on integrated site evaluations and follow-up site investigations will be particularly encouraged.
The Journal will welcome contributions, in the form of short (field) reports, on the application of prospection techniques in support of comprehensive land-use studies.
The Journal will, as appropriate, contain book reviews, conference and meeting reviews, and software evaluation.
All papers will be subjected to peer review.