V. Santás-Miguel, Laura Rodriguez‐Gonzalez, Avelino Núñez-Delgado, E. Álvarez-Rodríguez, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño
{"title":"Ni和Zn诱导土壤细菌群落对3种四环素类抗生素的耐受性","authors":"V. Santás-Miguel, Laura Rodriguez‐Gonzalez, Avelino Núñez-Delgado, E. Álvarez-Rodríguez, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño","doi":"10.3389/sjss.2023.10799","DOIUrl":null,"url":null,"abstract":"A laboratory work has been carried out to determine the tolerance of soil bacterial communities to Ni and Zn and co-tolerance to tetracycline antibiotics (chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC)) in soils individually spiked with five different concentrations of Ni or Zn (1,000, 750, 500, 250, and 125 mg kg−1), and an uncontaminated (0 mg kg−1) control soil. The PICT parameter (pollution-induced community tolerance) was estimated for the bacterial community using the tritium (3H)-labeled leucine incorporation technique, and the values corresponding to log IC50 were used as toxicity index. The mean log IC50 values observed in the uncontaminated soil samples indicate that Zn (with log IC50 = −2.83) was more toxic than Ni (log IC50 = −2.73). In addition, for the soil with the lowest carbon content (C = 1.9%), Ni-contaminated samples showed increased tolerance when the Ni concentrations added were ≥500 mg kg−1, while for the soils with higher carbon content (between 5.3% and 10.9%) tolerance increased when Ni concentrations added were ≥1,000 mg kg−1. Regarding the soils contaminated with Zn, tolerance increased in all the soils studied when the Zn concentrations added were ≥125 mg kg−1, regardless of the soil carbon content. The co-tolerance increases obtained after exposure of the bacterial suspension to TC, OTC and CTC showed an identical behavior within these tetracycline antibiotics. However, it was dependent on the heavy metal tested (Ni or Zn). In the case of soils 1 (C = 1.1%) and 2 (C = 5.3%), the soil bacterial communities showed increases in co-tolerance to TC, OTC and CTC for Ni concentrations added of ≥125 mg kg−1, while for soil 3 (with C = 10.9%) co-tolerance took place when Ni was added at ≥1,000 mg kg−1. However, in soils contaminated with Zn, increases in co-tolerance to CTC, OTC and TC occurred at Zn concentrations added of ≥125 mg kg−1 for the 3 soils tested. These results can be considered relevant when anticipating possible environmental repercussions related to the simultaneous presence of various types of pollutants, specifically certain heavy metals and antibiotics.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Soil Bacterial Community Tolerance to Three Tetracycline Antibiotics Induced by Ni and Zn\",\"authors\":\"V. Santás-Miguel, Laura Rodriguez‐Gonzalez, Avelino Núñez-Delgado, E. Álvarez-Rodríguez, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño\",\"doi\":\"10.3389/sjss.2023.10799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A laboratory work has been carried out to determine the tolerance of soil bacterial communities to Ni and Zn and co-tolerance to tetracycline antibiotics (chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC)) in soils individually spiked with five different concentrations of Ni or Zn (1,000, 750, 500, 250, and 125 mg kg−1), and an uncontaminated (0 mg kg−1) control soil. The PICT parameter (pollution-induced community tolerance) was estimated for the bacterial community using the tritium (3H)-labeled leucine incorporation technique, and the values corresponding to log IC50 were used as toxicity index. The mean log IC50 values observed in the uncontaminated soil samples indicate that Zn (with log IC50 = −2.83) was more toxic than Ni (log IC50 = −2.73). In addition, for the soil with the lowest carbon content (C = 1.9%), Ni-contaminated samples showed increased tolerance when the Ni concentrations added were ≥500 mg kg−1, while for the soils with higher carbon content (between 5.3% and 10.9%) tolerance increased when Ni concentrations added were ≥1,000 mg kg−1. Regarding the soils contaminated with Zn, tolerance increased in all the soils studied when the Zn concentrations added were ≥125 mg kg−1, regardless of the soil carbon content. The co-tolerance increases obtained after exposure of the bacterial suspension to TC, OTC and CTC showed an identical behavior within these tetracycline antibiotics. However, it was dependent on the heavy metal tested (Ni or Zn). In the case of soils 1 (C = 1.1%) and 2 (C = 5.3%), the soil bacterial communities showed increases in co-tolerance to TC, OTC and CTC for Ni concentrations added of ≥125 mg kg−1, while for soil 3 (with C = 10.9%) co-tolerance took place when Ni was added at ≥1,000 mg kg−1. However, in soils contaminated with Zn, increases in co-tolerance to CTC, OTC and TC occurred at Zn concentrations added of ≥125 mg kg−1 for the 3 soils tested. These results can be considered relevant when anticipating possible environmental repercussions related to the simultaneous presence of various types of pollutants, specifically certain heavy metals and antibiotics.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2023.10799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2023.10799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Soil Bacterial Community Tolerance to Three Tetracycline Antibiotics Induced by Ni and Zn
A laboratory work has been carried out to determine the tolerance of soil bacterial communities to Ni and Zn and co-tolerance to tetracycline antibiotics (chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC)) in soils individually spiked with five different concentrations of Ni or Zn (1,000, 750, 500, 250, and 125 mg kg−1), and an uncontaminated (0 mg kg−1) control soil. The PICT parameter (pollution-induced community tolerance) was estimated for the bacterial community using the tritium (3H)-labeled leucine incorporation technique, and the values corresponding to log IC50 were used as toxicity index. The mean log IC50 values observed in the uncontaminated soil samples indicate that Zn (with log IC50 = −2.83) was more toxic than Ni (log IC50 = −2.73). In addition, for the soil with the lowest carbon content (C = 1.9%), Ni-contaminated samples showed increased tolerance when the Ni concentrations added were ≥500 mg kg−1, while for the soils with higher carbon content (between 5.3% and 10.9%) tolerance increased when Ni concentrations added were ≥1,000 mg kg−1. Regarding the soils contaminated with Zn, tolerance increased in all the soils studied when the Zn concentrations added were ≥125 mg kg−1, regardless of the soil carbon content. The co-tolerance increases obtained after exposure of the bacterial suspension to TC, OTC and CTC showed an identical behavior within these tetracycline antibiotics. However, it was dependent on the heavy metal tested (Ni or Zn). In the case of soils 1 (C = 1.1%) and 2 (C = 5.3%), the soil bacterial communities showed increases in co-tolerance to TC, OTC and CTC for Ni concentrations added of ≥125 mg kg−1, while for soil 3 (with C = 10.9%) co-tolerance took place when Ni was added at ≥1,000 mg kg−1. However, in soils contaminated with Zn, increases in co-tolerance to CTC, OTC and TC occurred at Zn concentrations added of ≥125 mg kg−1 for the 3 soils tested. These results can be considered relevant when anticipating possible environmental repercussions related to the simultaneous presence of various types of pollutants, specifically certain heavy metals and antibiotics.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.