Lévy噪声驱动的随机三维原始方程的指数行为及其稳定性

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Dong Su, Hui Liu
{"title":"Lévy噪声驱动的随机三维原始方程的指数行为及其稳定性","authors":"Dong Su, Hui Liu","doi":"10.1142/s0219493723500077","DOIUrl":null,"url":null,"abstract":"This paper establishes the exponential behavior and stability of the stochastic three-dimensional primitive equations driven by Lévy noise via Burkholder–Davis–Gundy inequality and Itô formula. In particular, we prove that under some conditions on the forcing terms, the weak solution converges exponentially in the mean square and almost surely exponentially to the stationary solution.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exponential behavior and stability of the stochastic three-dimensional primitive equations driven by Lévy noise\",\"authors\":\"Dong Su, Hui Liu\",\"doi\":\"10.1142/s0219493723500077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes the exponential behavior and stability of the stochastic three-dimensional primitive equations driven by Lévy noise via Burkholder–Davis–Gundy inequality and Itô formula. In particular, we prove that under some conditions on the forcing terms, the weak solution converges exponentially in the mean square and almost surely exponentially to the stationary solution.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493723500077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493723500077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过Burkholder–Davis–Gundy不等式和Itô公式,建立了Lévy噪声驱动的随机三维原始方程的指数行为和稳定性。特别地,我们证明了在强迫项的某些条件下,弱解在均方上指数收敛,并且几乎可以肯定地指数收敛于平稳解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The exponential behavior and stability of the stochastic three-dimensional primitive equations driven by Lévy noise
This paper establishes the exponential behavior and stability of the stochastic three-dimensional primitive equations driven by Lévy noise via Burkholder–Davis–Gundy inequality and Itô formula. In particular, we prove that under some conditions on the forcing terms, the weak solution converges exponentially in the mean square and almost surely exponentially to the stationary solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信