{"title":"随机张量模型的Marchenko-Pastur定律","authors":"P. Yaskov","doi":"10.1214/23-ecp527","DOIUrl":null,"url":null,"abstract":"We study the limiting spectral distribution of large-dimensional sample covariance matrices associated with symmetric random tensors formed by $\\binom{n}{d}$ different products of $d$ variables chosen from $n$ independent standardized random variables. We find optimal sufficient conditions for this distribution to be the Marchenko-Pastur law in the case $d=d(n)$ and $n\\to\\infty$. Our conditions reduce to $d^2=o(n)$ when the variables have uniformly bounded fourth moments. The proofs are based on a new concentration inequality for quadratic forms in symmetric random tensors and a law of large numbers for elementary symmetric random polynomials.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Marchenko-Pastur law for a random tensor model\",\"authors\":\"P. Yaskov\",\"doi\":\"10.1214/23-ecp527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the limiting spectral distribution of large-dimensional sample covariance matrices associated with symmetric random tensors formed by $\\\\binom{n}{d}$ different products of $d$ variables chosen from $n$ independent standardized random variables. We find optimal sufficient conditions for this distribution to be the Marchenko-Pastur law in the case $d=d(n)$ and $n\\\\to\\\\infty$. Our conditions reduce to $d^2=o(n)$ when the variables have uniformly bounded fourth moments. The proofs are based on a new concentration inequality for quadratic forms in symmetric random tensors and a law of large numbers for elementary symmetric random polynomials.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ecp527\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp527","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We study the limiting spectral distribution of large-dimensional sample covariance matrices associated with symmetric random tensors formed by $\binom{n}{d}$ different products of $d$ variables chosen from $n$ independent standardized random variables. We find optimal sufficient conditions for this distribution to be the Marchenko-Pastur law in the case $d=d(n)$ and $n\to\infty$. Our conditions reduce to $d^2=o(n)$ when the variables have uniformly bounded fourth moments. The proofs are based on a new concentration inequality for quadratic forms in symmetric random tensors and a law of large numbers for elementary symmetric random polynomials.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.