{"title":"玉米棒-纤维素纳米晶增强聚乳酸的热性能","authors":"Wei Keat Ng, W. Chow, H. Ismail","doi":"10.1177/2041247920952636","DOIUrl":null,"url":null,"abstract":"Cellulose nanocrystals were extracted from agricultural waste corn cob using acid hydrolysis followed by freeze drying. Poly(lactic acid)/corn cob cellulose nanocrystals (PLA/CCNC) composites were prepared using solvent casting. The properties of CCNC were characterized using transmission electron microscope (TEM), zeta potential analyzer, and thermogravimetric analyzer (TGA). The effects of CCNC on the thermal properties of PLA were examined using differential scanning calorimetry (DSC) and TGA. From the SEM and TEM results, the irregular shaped and micron-sized corn cob powder was transformed to needle-like shaped nanocellulose (aspect ratio approximately 30.80) after the acid hydrolysis process. TGA results show that the thermal stability of CCNC is higher than that of corn cob powder. The zeta potential of CCNC is −24.6 mV, which indicates there is a repulsion force between the individual CCNC and making them disperse uniformly and stable in aqueous media. DSC and TGA results show that the crystallinity and thermal stability of PLA were increased by the incorporation of CCNC. This demonstrates that the CCNC is a potential bio-nanofiller with good thermal stability and nucleating-ability for PLA.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2041247920952636","citationCount":"11","resultStr":"{\"title\":\"Thermal properties enhancement of poly(lactic acid) by corn cob cellulose nanocrystals\",\"authors\":\"Wei Keat Ng, W. Chow, H. Ismail\",\"doi\":\"10.1177/2041247920952636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellulose nanocrystals were extracted from agricultural waste corn cob using acid hydrolysis followed by freeze drying. Poly(lactic acid)/corn cob cellulose nanocrystals (PLA/CCNC) composites were prepared using solvent casting. The properties of CCNC were characterized using transmission electron microscope (TEM), zeta potential analyzer, and thermogravimetric analyzer (TGA). The effects of CCNC on the thermal properties of PLA were examined using differential scanning calorimetry (DSC) and TGA. From the SEM and TEM results, the irregular shaped and micron-sized corn cob powder was transformed to needle-like shaped nanocellulose (aspect ratio approximately 30.80) after the acid hydrolysis process. TGA results show that the thermal stability of CCNC is higher than that of corn cob powder. The zeta potential of CCNC is −24.6 mV, which indicates there is a repulsion force between the individual CCNC and making them disperse uniformly and stable in aqueous media. DSC and TGA results show that the crystallinity and thermal stability of PLA were increased by the incorporation of CCNC. This demonstrates that the CCNC is a potential bio-nanofiller with good thermal stability and nucleating-ability for PLA.\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2041247920952636\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2041247920952636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2041247920952636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Thermal properties enhancement of poly(lactic acid) by corn cob cellulose nanocrystals
Cellulose nanocrystals were extracted from agricultural waste corn cob using acid hydrolysis followed by freeze drying. Poly(lactic acid)/corn cob cellulose nanocrystals (PLA/CCNC) composites were prepared using solvent casting. The properties of CCNC were characterized using transmission electron microscope (TEM), zeta potential analyzer, and thermogravimetric analyzer (TGA). The effects of CCNC on the thermal properties of PLA were examined using differential scanning calorimetry (DSC) and TGA. From the SEM and TEM results, the irregular shaped and micron-sized corn cob powder was transformed to needle-like shaped nanocellulose (aspect ratio approximately 30.80) after the acid hydrolysis process. TGA results show that the thermal stability of CCNC is higher than that of corn cob powder. The zeta potential of CCNC is −24.6 mV, which indicates there is a repulsion force between the individual CCNC and making them disperse uniformly and stable in aqueous media. DSC and TGA results show that the crystallinity and thermal stability of PLA were increased by the incorporation of CCNC. This demonstrates that the CCNC is a potential bio-nanofiller with good thermal stability and nucleating-ability for PLA.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.