构造极大共群

IF 0.8 2区 数学 Q2 MATHEMATICS
David Schrittesser
{"title":"构造极大共群","authors":"David Schrittesser","doi":"10.1017/nmj.2022.46","DOIUrl":null,"url":null,"abstract":"Abstract Improving and clarifying a construction of Horowitz and Shelah, we show how to construct (in \n$\\mathsf {ZF}$\n , i.e., without using the Axiom of Choice) maximal cofinitary groups. Among the groups we construct, one is definable by a formula in second-order arithmetic with only a few natural number quantifiers.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"251 1","pages":"622 - 651"},"PeriodicalIF":0.8000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CONSTRUCTING MAXIMAL COFINITARY GROUPS\",\"authors\":\"David Schrittesser\",\"doi\":\"10.1017/nmj.2022.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Improving and clarifying a construction of Horowitz and Shelah, we show how to construct (in \\n$\\\\mathsf {ZF}$\\n , i.e., without using the Axiom of Choice) maximal cofinitary groups. Among the groups we construct, one is definable by a formula in second-order arithmetic with only a few natural number quantifiers.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"251 1\",\"pages\":\"622 - 651\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.46\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.46","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要改进和澄清了Horowitz和Shelah的一个构造,我们展示了如何构造(在$\mathsf{ZF}$中,即不使用选择公理)最大共初始群。在我们构造的群中,有一个是可以用只有几个自然数量词的二阶算术公式定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONSTRUCTING MAXIMAL COFINITARY GROUPS
Abstract Improving and clarifying a construction of Horowitz and Shelah, we show how to construct (in $\mathsf {ZF}$ , i.e., without using the Axiom of Choice) maximal cofinitary groups. Among the groups we construct, one is definable by a formula in second-order arithmetic with only a few natural number quantifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信