关于某些Jacobi和的r -进值

IF 0.3 4区 数学 Q4 MATHEMATICS
V. Arul
{"title":"关于某些Jacobi和的r -进值","authors":"V. Arul","doi":"10.5802/jtnb.1171","DOIUrl":null,"url":null,"abstract":"Jacobi sums are ubiquitous in number theory, and congruences often provide a helpful way to study them. A p-adic congruence for Jacobi sums comes from Stickelberger’s congruence, and various `-adic congruences have been studied in [Eva98], [Mik87], [Iwa75], [Iha86], and [Ueh87]. We establish a new `-adic congruence for certain Jacobi sums.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the ℓ-adic valuation of certain Jacobi sums\",\"authors\":\"V. Arul\",\"doi\":\"10.5802/jtnb.1171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jacobi sums are ubiquitous in number theory, and congruences often provide a helpful way to study them. A p-adic congruence for Jacobi sums comes from Stickelberger’s congruence, and various `-adic congruences have been studied in [Eva98], [Mik87], [Iwa75], [Iha86], and [Ueh87]. We establish a new `-adic congruence for certain Jacobi sums.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1171\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1171","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

雅可比和在数论中无处不在,而同余通常为研究雅可比和提供了一种有用的方法。Jacobi和的p进同余来自于Stickelberger的同余,在[Eva98]、[Mik87]、[Iwa75]、[Iha86]和[Ueh87]中已经研究了各种'进同余'。我们为某些雅可比和建立了一个新的进同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the ℓ-adic valuation of certain Jacobi sums
Jacobi sums are ubiquitous in number theory, and congruences often provide a helpful way to study them. A p-adic congruence for Jacobi sums comes from Stickelberger’s congruence, and various `-adic congruences have been studied in [Eva98], [Mik87], [Iwa75], [Iha86], and [Ueh87]. We establish a new `-adic congruence for certain Jacobi sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信