{"title":"花环产品和点灯器组的死胡同","authors":"Eduardo Silva","doi":"10.1142/s0218196723500571","DOIUrl":null,"url":null,"abstract":"For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dead ends on wreath products and lamplighter groups\",\"authors\":\"Eduardo Silva\",\"doi\":\"10.1142/s0218196723500571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\\\\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\\\\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500571\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196723500571","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dead ends on wreath products and lamplighter groups
For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.