花环产品和点灯器组的死胡同

Pub Date : 2022-06-17 DOI:10.1142/s0218196723500571
Eduardo Silva
{"title":"花环产品和点灯器组的死胡同","authors":"Eduardo Silva","doi":"10.1142/s0218196723500571","DOIUrl":null,"url":null,"abstract":"For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dead ends on wreath products and lamplighter groups\",\"authors\":\"Eduardo Silva\",\"doi\":\"10.1142/s0218196723500571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\\\\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\\\\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196723500571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196723500571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于任何有限群$A$和任何有限生成群$B$,我们证明了相应的点灯器群$A\wr B$允许一个具有无界深度的标准生成集,并且如果$B$是阿贝尔的,则上述对于每个标准生成集都成立。这推广了由于Cleary和Taback引起的$B=\mathbb{Z}$及其循环生成器的情况。当$B=H*K$是两个有限群$H$和$K$的自由积时,我们根据与$H$的Cayley图和$K$$的几何常数来刻画相关联的点灯器群的哪些标准生成器具有无界深度。特别地,我们发现了与一维情况的区别:两个足够大的有限循环群的自由积上的Lamplier群相对于某个标准生成集具有一致有界深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Dead ends on wreath products and lamplighter groups
For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信