{"title":"16-QAM、64-QAM和256-QAM O-NOMA波形的吞吐量和误码率分析","authors":"Arun Kumar, Nidhi Gour, Himanshu Sharma","doi":"10.1515/joc-2023-0200","DOIUrl":null,"url":null,"abstract":"Abstract This study presents a comprehensive analysis of the throughput performance, spectrum efficiency, and block error rate (BLER) of optical non-orthogonal multiple access (O-NOMA) waveforms using 16-quadrature amplitude modulation (QAM), 64-QAM, and 256-QAM modulation schemes. The aim is to assess the trade-offs between data rate, spectral efficiency, and error performance in O-NOMA systems. The analysis reveals that higher-order modulations, such as 64-QAM and 256-QAM, offer higher data rates and improved spectrum efficiency compared to 16-QAM. Furthermore, the study investigates the spectrum performance of the O-NOMA waveforms. The results indicate that higher-order modulations may utilise the spectrum more efficiently, maximising the data throughput within the available bandwidth. Moreover, the BLER analysis provides insights into the error performance of the O-NOMA waveforms. It quantifies the probability of errors occurring in a block of transmitted data and evaluates the system’s reliability. The analysis reveals that 256-QAM O-NOMA achieves lower BLER and high throughput in uplink and downlink as compared with the 16 and 64-QAM O-NOMA frameworks.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of throughput and error rate of 16-QAM, 64-QAM, and 256-QAM O-NOMA waveforms\",\"authors\":\"Arun Kumar, Nidhi Gour, Himanshu Sharma\",\"doi\":\"10.1515/joc-2023-0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study presents a comprehensive analysis of the throughput performance, spectrum efficiency, and block error rate (BLER) of optical non-orthogonal multiple access (O-NOMA) waveforms using 16-quadrature amplitude modulation (QAM), 64-QAM, and 256-QAM modulation schemes. The aim is to assess the trade-offs between data rate, spectral efficiency, and error performance in O-NOMA systems. The analysis reveals that higher-order modulations, such as 64-QAM and 256-QAM, offer higher data rates and improved spectrum efficiency compared to 16-QAM. Furthermore, the study investigates the spectrum performance of the O-NOMA waveforms. The results indicate that higher-order modulations may utilise the spectrum more efficiently, maximising the data throughput within the available bandwidth. Moreover, the BLER analysis provides insights into the error performance of the O-NOMA waveforms. It quantifies the probability of errors occurring in a block of transmitted data and evaluates the system’s reliability. The analysis reveals that 256-QAM O-NOMA achieves lower BLER and high throughput in uplink and downlink as compared with the 16 and 64-QAM O-NOMA frameworks.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Analysis of throughput and error rate of 16-QAM, 64-QAM, and 256-QAM O-NOMA waveforms
Abstract This study presents a comprehensive analysis of the throughput performance, spectrum efficiency, and block error rate (BLER) of optical non-orthogonal multiple access (O-NOMA) waveforms using 16-quadrature amplitude modulation (QAM), 64-QAM, and 256-QAM modulation schemes. The aim is to assess the trade-offs between data rate, spectral efficiency, and error performance in O-NOMA systems. The analysis reveals that higher-order modulations, such as 64-QAM and 256-QAM, offer higher data rates and improved spectrum efficiency compared to 16-QAM. Furthermore, the study investigates the spectrum performance of the O-NOMA waveforms. The results indicate that higher-order modulations may utilise the spectrum more efficiently, maximising the data throughput within the available bandwidth. Moreover, the BLER analysis provides insights into the error performance of the O-NOMA waveforms. It quantifies the probability of errors occurring in a block of transmitted data and evaluates the system’s reliability. The analysis reveals that 256-QAM O-NOMA achieves lower BLER and high throughput in uplink and downlink as compared with the 16 and 64-QAM O-NOMA frameworks.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications