{"title":"过滤、渐近$sigma$-素数和表面元素","authors":"K. A. Essan","doi":"10.22124/JART.2021.17418.1221","DOIUrl":null,"url":null,"abstract":"Let $(A,mathfrak{M})$ be a Noetherian local ring with infinite residue field $A/ mathfrak{M}$ and $I$ be a $mathfrak{M}$-primary ideal of $A$. Let $f = (I_{n})_{nin mathbb{N}}$ be a good filtration on $A$ such that $I_{1}$ containing $I$. Let $sigma$ be a semi-prime operation in the set of ideals of $A$. Let $lgeq 1$ be an integer and $(f^{(l)})_{sigma} = sigma(I_{n+l}):sigma(I_{n})$ for all large integers $n$ and$rho^{f}_{sigma}(A)= min big{ nin mathbb{N} | sigma(I_{l})=(f^{(l)})_{sigma}, for all lgeq n big}$. Here we show that, if $I$ contains an $sigma(f)$-superficial element, then $sigma(I_{l+1}):I_{1}=sigma(I_{l})$ for all $l geq rho^{f}_{sigma}(A)$. We suppose that $P$ is a prime ideal of $A$ and there exists a semi-prime operation $widehat{sigma}_{P}$ in the set of ideals of $A_{P}$ such that $widehat{sigma}_{P}(JA_{P})=sigma(J)A_{P}$, for all ideal $J$ of $A$. Hence $Ass_{A}big( A / sigma(I_{l}) big) subseteq Ass_{A}big( A / sigma(I_{l+1}) big)$, for all $l geq rho^{f}_{sigma}(A)$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"159-167"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filtration, asymptotic $sigma$-prime divisors and superficial elements\",\"authors\":\"K. A. Essan\",\"doi\":\"10.22124/JART.2021.17418.1221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(A,mathfrak{M})$ be a Noetherian local ring with infinite residue field $A/ mathfrak{M}$ and $I$ be a $mathfrak{M}$-primary ideal of $A$. Let $f = (I_{n})_{nin mathbb{N}}$ be a good filtration on $A$ such that $I_{1}$ containing $I$. Let $sigma$ be a semi-prime operation in the set of ideals of $A$. Let $lgeq 1$ be an integer and $(f^{(l)})_{sigma} = sigma(I_{n+l}):sigma(I_{n})$ for all large integers $n$ and$rho^{f}_{sigma}(A)= min big{ nin mathbb{N} | sigma(I_{l})=(f^{(l)})_{sigma}, for all lgeq n big}$. Here we show that, if $I$ contains an $sigma(f)$-superficial element, then $sigma(I_{l+1}):I_{1}=sigma(I_{l})$ for all $l geq rho^{f}_{sigma}(A)$. We suppose that $P$ is a prime ideal of $A$ and there exists a semi-prime operation $widehat{sigma}_{P}$ in the set of ideals of $A_{P}$ such that $widehat{sigma}_{P}(JA_{P})=sigma(J)A_{P}$, for all ideal $J$ of $A$. Hence $Ass_{A}big( A / sigma(I_{l}) big) subseteq Ass_{A}big( A / sigma(I_{l+1}) big)$, for all $l geq rho^{f}_{sigma}(A)$.\",\"PeriodicalId\":52302,\"journal\":{\"name\":\"Journal of Algebra and Related Topics\",\"volume\":\"9 1\",\"pages\":\"159-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/JART.2021.17418.1221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.17418.1221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
设$(A,mathfrak{M})$是具有无穷余域$A/mathfrak{M}$的Noetherian局部环,$I$是$A$的$mathfrak{M}$主理想。设$f=(I_{n})_{nin-mathbb{n}}$是$a$上的一个好的过滤,使得$I_{1}$包含$I$。设$sigma$是$a$理想集合中的半素数运算。设$lgeq1$是一个整数,并且对于所有大整数$n$和$rho,$(f^{(l)})_{sigma}=sigma(I_{n+l}):sigma(I_{n})$^{f}_{sigma}(A)=min-bigh{nin-mathbb{N}| sigma(I_{l})=(f^{(l)})_{sigma},对于所有的lgeq N big}$。这里我们证明,如果$I$包含一个$sigma(f)$-表观元素,那么对于所有$l geq rho,$sigma(I_{l+1}):I_{1}=sigma(I_{l})$^{f}_{西格玛}(A)$。我们假设$P$是$a$的素数理想,并且存在一个半素数运算$widehat{sigma}_{P} $A_{P}$的理想集合中的$widehat{sigma}_{P} (JA_{P})=sigma(J)A_{P}$,对于$A$的所有理想$J$。因此$Ass_{A}big(A/sigma(I_{l})big)子类Ass_{A}big(A/sigma(I_{l+1})big)$,对于所有$l geq rho^{f}_{西格玛}(A)$。
Filtration, asymptotic $sigma$-prime divisors and superficial elements
Let $(A,mathfrak{M})$ be a Noetherian local ring with infinite residue field $A/ mathfrak{M}$ and $I$ be a $mathfrak{M}$-primary ideal of $A$. Let $f = (I_{n})_{nin mathbb{N}}$ be a good filtration on $A$ such that $I_{1}$ containing $I$. Let $sigma$ be a semi-prime operation in the set of ideals of $A$. Let $lgeq 1$ be an integer and $(f^{(l)})_{sigma} = sigma(I_{n+l}):sigma(I_{n})$ for all large integers $n$ and$rho^{f}_{sigma}(A)= min big{ nin mathbb{N} | sigma(I_{l})=(f^{(l)})_{sigma}, for all lgeq n big}$. Here we show that, if $I$ contains an $sigma(f)$-superficial element, then $sigma(I_{l+1}):I_{1}=sigma(I_{l})$ for all $l geq rho^{f}_{sigma}(A)$. We suppose that $P$ is a prime ideal of $A$ and there exists a semi-prime operation $widehat{sigma}_{P}$ in the set of ideals of $A_{P}$ such that $widehat{sigma}_{P}(JA_{P})=sigma(J)A_{P}$, for all ideal $J$ of $A$. Hence $Ass_{A}big( A / sigma(I_{l}) big) subseteq Ass_{A}big( A / sigma(I_{l+1}) big)$, for all $l geq rho^{f}_{sigma}(A)$.