戈达德地球观测系统中亚洲高山地区的季节预报技巧

E. Massoud, L. Andrews, R. Reichle, A. Molod, Jongmin Park, S. Ruehr, M. Girotto
{"title":"戈达德地球观测系统中亚洲高山地区的季节预报技巧","authors":"E. Massoud, L. Andrews, R. Reichle, A. Molod, Jongmin Park, S. Ruehr, M. Girotto","doi":"10.5194/esd-14-147-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Seasonal variability of the global hydrologic cycle\ndirectly impacts human activities, including hazard assessment and\nmitigation, agricultural decisions, and water resources management. This is\nparticularly true across the High Mountain Asia (HMA) region, where\navailability of water resources can change depending on local seasonality of\nthe hydrologic cycle. Forecasting the atmospheric states and surface\nconditions, including hydrometeorologically relevant variables, at\nsubseasonal-to-seasonal (S2S) lead times of weeks to months is an area of\nactive research and development. NASA's Goddard Earth Observing System\n(GEOS) S2S prediction system has been developed with this research goal in\nmind. Here, we benchmark the forecast skill of GEOS-S2S (version 2)\nhydrometeorological forecasts at 1–3-month lead times in the HMA region,\nincluding a portion of the Indian subcontinent, during the retrospective\nforecast period, 1981–2016. To assess forecast skill, we evaluate 2 m air\ntemperature, total precipitation, fractional snow cover, snow water\nequivalent, surface soil moisture, and terrestrial water storage forecasts\nagainst the Modern-Era Retrospective analysis for Research and Applications,\nVersion 2 (MERRA-2) and independent reanalysis data, satellite observations,\nand data fusion products. Anomaly correlation is highest when the forecasts\nare evaluated against MERRA-2 and particularly in variables with long memory\nin the climate system, likely due to the similar initial conditions and model\narchitecture used in GEOS-S2S and MERRA-2. When compared to MERRA-2, results\nfor the 1-month forecast skill range from an anomaly correlation of\nRanom=0.18 for precipitation to Ranom=0.62 for soil moisture.\nAnomaly correlations are consistently lower when forecasts are evaluated\nagainst independent observations; results for the 1-month forecast skill\nrange from Ranom=0.13 for snow water equivalent to Ranom=0.24\nfor fractional snow cover. We find that, generally, hydrometeorological\nforecast skill is dependent on the forecast lead time, the memory of the\nvariable within the physical system, and the validation dataset used.\nOverall, these results benchmark the GEOS-S2S system's ability to forecast\nHMA hydrometeorology.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System\",\"authors\":\"E. Massoud, L. Andrews, R. Reichle, A. Molod, Jongmin Park, S. Ruehr, M. Girotto\",\"doi\":\"10.5194/esd-14-147-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Seasonal variability of the global hydrologic cycle\\ndirectly impacts human activities, including hazard assessment and\\nmitigation, agricultural decisions, and water resources management. This is\\nparticularly true across the High Mountain Asia (HMA) region, where\\navailability of water resources can change depending on local seasonality of\\nthe hydrologic cycle. Forecasting the atmospheric states and surface\\nconditions, including hydrometeorologically relevant variables, at\\nsubseasonal-to-seasonal (S2S) lead times of weeks to months is an area of\\nactive research and development. NASA's Goddard Earth Observing System\\n(GEOS) S2S prediction system has been developed with this research goal in\\nmind. Here, we benchmark the forecast skill of GEOS-S2S (version 2)\\nhydrometeorological forecasts at 1–3-month lead times in the HMA region,\\nincluding a portion of the Indian subcontinent, during the retrospective\\nforecast period, 1981–2016. To assess forecast skill, we evaluate 2 m air\\ntemperature, total precipitation, fractional snow cover, snow water\\nequivalent, surface soil moisture, and terrestrial water storage forecasts\\nagainst the Modern-Era Retrospective analysis for Research and Applications,\\nVersion 2 (MERRA-2) and independent reanalysis data, satellite observations,\\nand data fusion products. Anomaly correlation is highest when the forecasts\\nare evaluated against MERRA-2 and particularly in variables with long memory\\nin the climate system, likely due to the similar initial conditions and model\\narchitecture used in GEOS-S2S and MERRA-2. When compared to MERRA-2, results\\nfor the 1-month forecast skill range from an anomaly correlation of\\nRanom=0.18 for precipitation to Ranom=0.62 for soil moisture.\\nAnomaly correlations are consistently lower when forecasts are evaluated\\nagainst independent observations; results for the 1-month forecast skill\\nrange from Ranom=0.13 for snow water equivalent to Ranom=0.24\\nfor fractional snow cover. We find that, generally, hydrometeorological\\nforecast skill is dependent on the forecast lead time, the memory of the\\nvariable within the physical system, and the validation dataset used.\\nOverall, these results benchmark the GEOS-S2S system's ability to forecast\\nHMA hydrometeorology.\\n\",\"PeriodicalId\":92775,\"journal\":{\"name\":\"Earth system dynamics : ESD\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth system dynamics : ESD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/esd-14-147-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-14-147-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要全球水文循环的季节变化直接影响人类活动,包括灾害评估和管理、农业决策和水资源管理。这在整个亚洲高山地区尤其如此,那里的水资源可用性可能会根据当地水文循环的季节性而变化。预测大气状态和地表条件,包括水文气象相关变量,在数周至数月的季节性(S2S)提前期内,是一个活跃的研究和开发领域。美国国家航空航天局的戈达德地球观测系统(GEOS)S2S预测系统是为了实现这一研究目标而开发的。在这里,我们在1981年至2016年的回顾预测期内,对HMA地区(包括印度次大陆的一部分)的GEOS-S2S(第2版)水文气象预测在1-3个月的提前期内的预测技巧进行了基准测试。为了评估预测技能,我们评估2 m气温、总降水量、部分积雪、雪水当量、地表土壤湿度和地表蓄水量预测——现代研究与应用回顾分析第2版(MERRA-2)和独立再分析数据、卫星观测和数据融合产品。当根据MERRA-2评估预测时,异常相关性最高,特别是在气候系统中具有长记忆的变量中,这可能是由于GEOS-S2S和MERRA-2中使用的类似初始条件和模型架构。与MERRA-2相比,1个月预测技巧的结果范围从降水的异常相关性RM=0.18到土壤湿度的异常相关性Ranom=0.62。当根据独立观测对预测进行评估时,异常相关性始终较低;1个月预测技能的结果范围从融水的Ranom=0.13到部分积雪的Ranom=0.024。我们发现,通常,水文气象预测技能取决于预测提前期、物理系统内变量的记忆以及所使用的验证数据集。总体而言,这些结果是GEOS-S2S系统预测HMA水文气象能力的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System
Abstract. Seasonal variability of the global hydrologic cycle directly impacts human activities, including hazard assessment and mitigation, agricultural decisions, and water resources management. This is particularly true across the High Mountain Asia (HMA) region, where availability of water resources can change depending on local seasonality of the hydrologic cycle. Forecasting the atmospheric states and surface conditions, including hydrometeorologically relevant variables, at subseasonal-to-seasonal (S2S) lead times of weeks to months is an area of active research and development. NASA's Goddard Earth Observing System (GEOS) S2S prediction system has been developed with this research goal in mind. Here, we benchmark the forecast skill of GEOS-S2S (version 2) hydrometeorological forecasts at 1–3-month lead times in the HMA region, including a portion of the Indian subcontinent, during the retrospective forecast period, 1981–2016. To assess forecast skill, we evaluate 2 m air temperature, total precipitation, fractional snow cover, snow water equivalent, surface soil moisture, and terrestrial water storage forecasts against the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) and independent reanalysis data, satellite observations, and data fusion products. Anomaly correlation is highest when the forecasts are evaluated against MERRA-2 and particularly in variables with long memory in the climate system, likely due to the similar initial conditions and model architecture used in GEOS-S2S and MERRA-2. When compared to MERRA-2, results for the 1-month forecast skill range from an anomaly correlation of Ranom=0.18 for precipitation to Ranom=0.62 for soil moisture. Anomaly correlations are consistently lower when forecasts are evaluated against independent observations; results for the 1-month forecast skill range from Ranom=0.13 for snow water equivalent to Ranom=0.24 for fractional snow cover. We find that, generally, hydrometeorological forecast skill is dependent on the forecast lead time, the memory of the variable within the physical system, and the validation dataset used. Overall, these results benchmark the GEOS-S2S system's ability to forecast HMA hydrometeorology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信