线激光扫描热成像在复合材料缺陷检测和评价中的应用

IF 1.9 4区 材料科学 Q3 Materials Science
Yin Li, Yuan-Jia Song, Zheng-wei Yang, Xin Xie
{"title":"线激光扫描热成像在复合材料缺陷检测和评价中的应用","authors":"Yin Li, Yuan-Jia Song, Zheng-wei Yang, Xin Xie","doi":"10.1515/secm-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract The line laser scanning thermography was applied for the defect detection and evaluation of composite material in this work, which was carried out by the following procedures. First, a novel contrast enhancement method by homomorphic technology was proposed and validated by a case study. Then, a specimen containing 12 prefabricated defects was detected using line laser scanning thermography and the obtained thermal image sequence and changeable temperature were analyzed. Finally, the defect area was obtained via such thermal image processing as contrast enhancement based on the proposed method, threshold segmentation and quantitative evaluation. The obtained results show that the composite material defects with a depth of less than 4 mm can be detected using line laser scanning thermography but that with a depth of less than 3 mm can be evaluated quantitatively with a small error less than 10%.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":"29 1","pages":"74 - 83"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Use of line laser scanning thermography for the defect detection and evaluation of composite material\",\"authors\":\"Yin Li, Yuan-Jia Song, Zheng-wei Yang, Xin Xie\",\"doi\":\"10.1515/secm-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The line laser scanning thermography was applied for the defect detection and evaluation of composite material in this work, which was carried out by the following procedures. First, a novel contrast enhancement method by homomorphic technology was proposed and validated by a case study. Then, a specimen containing 12 prefabricated defects was detected using line laser scanning thermography and the obtained thermal image sequence and changeable temperature were analyzed. Finally, the defect area was obtained via such thermal image processing as contrast enhancement based on the proposed method, threshold segmentation and quantitative evaluation. The obtained results show that the composite material defects with a depth of less than 4 mm can be detected using line laser scanning thermography but that with a depth of less than 3 mm can be evaluated quantitatively with a small error less than 10%.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":\"29 1\",\"pages\":\"74 - 83\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0007\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0007","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4

摘要

摘要:本文将线激光扫描热成像技术应用于复合材料的缺陷检测与评价,具体步骤如下:首先,提出了一种基于同态技术的对比度增强方法,并通过实例进行了验证。然后,利用线激光扫描热成像技术对含有12个预制缺陷的试样进行检测,并对获得的热图像序列和温度变化进行分析。最后,根据提出的方法,通过对比度增强、阈值分割、定量评价等热图像处理得到缺陷区域。结果表明:线激光扫描热成像可以检测深度小于4 mm的复合材料缺陷,而深度小于3 mm的复合材料缺陷可以定量评估,误差小于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of line laser scanning thermography for the defect detection and evaluation of composite material
Abstract The line laser scanning thermography was applied for the defect detection and evaluation of composite material in this work, which was carried out by the following procedures. First, a novel contrast enhancement method by homomorphic technology was proposed and validated by a case study. Then, a specimen containing 12 prefabricated defects was detected using line laser scanning thermography and the obtained thermal image sequence and changeable temperature were analyzed. Finally, the defect area was obtained via such thermal image processing as contrast enhancement based on the proposed method, threshold segmentation and quantitative evaluation. The obtained results show that the composite material defects with a depth of less than 4 mm can be detected using line laser scanning thermography but that with a depth of less than 3 mm can be evaluated quantitatively with a small error less than 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信