{"title":"具有越来越多参数的二部图模型的渐近理论","authors":"Yifan Fan, Binyan Jiang, Ting Yan, Yuan Zhang","doi":"10.1002/cjs.11735","DOIUrl":null,"url":null,"abstract":"<p>Affiliation networks contain a set of actors and a set of events, where edges denote the affiliation relationships between actors and events. Here, we introduce a class of affiliation network models for modelling the degree heterogeneity, where two sets of degree parameters are used to measure the activeness of actors and the popularity of events, respectively. We develop the moment method to infer these degree parameters. We establish a unified theoretical framework in which the consistency and asymptotic normality of the moment estimator hold as the numbers of actors and events both go to infinity. We apply our results to several popular models with weighted edges, including generalized <math>\n <mrow>\n <mi>β</mi>\n </mrow></math>-, Poisson and Rayleigh models. Simulation studies and a realistic example that involves the Poisson model provide concrete evidence that supports our theoretical findings.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"51 4","pages":"919-942"},"PeriodicalIF":0.8000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11735","citationCount":"3","resultStr":"{\"title\":\"Asymptotic theory in bipartite graph models with a growing number of parameters\",\"authors\":\"Yifan Fan, Binyan Jiang, Ting Yan, Yuan Zhang\",\"doi\":\"10.1002/cjs.11735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Affiliation networks contain a set of actors and a set of events, where edges denote the affiliation relationships between actors and events. Here, we introduce a class of affiliation network models for modelling the degree heterogeneity, where two sets of degree parameters are used to measure the activeness of actors and the popularity of events, respectively. We develop the moment method to infer these degree parameters. We establish a unified theoretical framework in which the consistency and asymptotic normality of the moment estimator hold as the numbers of actors and events both go to infinity. We apply our results to several popular models with weighted edges, including generalized <math>\\n <mrow>\\n <mi>β</mi>\\n </mrow></math>-, Poisson and Rayleigh models. Simulation studies and a realistic example that involves the Poisson model provide concrete evidence that supports our theoretical findings.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":\"51 4\",\"pages\":\"919-942\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11735\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11735\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11735","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic theory in bipartite graph models with a growing number of parameters
Affiliation networks contain a set of actors and a set of events, where edges denote the affiliation relationships between actors and events. Here, we introduce a class of affiliation network models for modelling the degree heterogeneity, where two sets of degree parameters are used to measure the activeness of actors and the popularity of events, respectively. We develop the moment method to infer these degree parameters. We establish a unified theoretical framework in which the consistency and asymptotic normality of the moment estimator hold as the numbers of actors and events both go to infinity. We apply our results to several popular models with weighted edges, including generalized -, Poisson and Rayleigh models. Simulation studies and a realistic example that involves the Poisson model provide concrete evidence that supports our theoretical findings.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.