对大于GPU内存的图像进行精确的基于tile的分割推理

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Michael Possolo, Peter Bajcsy
{"title":"对大于GPU内存的图像进行精确的基于tile的分割推理","authors":"Michael Possolo, Peter Bajcsy","doi":"10.6028/jres.126.009","DOIUrl":null,"url":null,"abstract":"<p><p>We address the problem of performing exact (tiling-error free) out-of-core semantic segmentation inference of arbitrarily large images using fully convolutional neural networks (FCN). FCN models have the property that once a model is trained, it can be applied on arbitrarily sized images, although it is still constrained by the available GPU memory. This work is motivated by overcoming the GPU memory size constraint without numerically impacting the final result. Our approach is to select a tile size that will fit into GPU memory with a halo border of half the network receptive field. Next, stride across the image by that tile size without the halo. The input tile halos will overlap, while the output tiles join exactly at the seams. Such an approach enables inference to be performed on whole slide microscopy images, such as those generated by a slide scanner. The novelty of this work is in documenting the formulas for determining tile size and stride and then validating them on U-Net and FC-DenseNet architectures. In addition, we quantify the errors due to tiling configurations which do not satisfy the constraints, and we explore the use of architecture effective receptive fields to estimate the tiling parameters.</p>","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914126/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exact Tile-Based Segmentation Inference for Images Larger than GPU Memory.\",\"authors\":\"Michael Possolo, Peter Bajcsy\",\"doi\":\"10.6028/jres.126.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We address the problem of performing exact (tiling-error free) out-of-core semantic segmentation inference of arbitrarily large images using fully convolutional neural networks (FCN). FCN models have the property that once a model is trained, it can be applied on arbitrarily sized images, although it is still constrained by the available GPU memory. This work is motivated by overcoming the GPU memory size constraint without numerically impacting the final result. Our approach is to select a tile size that will fit into GPU memory with a halo border of half the network receptive field. Next, stride across the image by that tile size without the halo. The input tile halos will overlap, while the output tiles join exactly at the seams. Such an approach enables inference to be performed on whole slide microscopy images, such as those generated by a slide scanner. The novelty of this work is in documenting the formulas for determining tile size and stride and then validating them on U-Net and FC-DenseNet architectures. In addition, we quantify the errors due to tiling configurations which do not satisfy the constraints, and we explore the use of architecture effective receptive fields to estimate the tiling parameters.</p>\",\"PeriodicalId\":54766,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.126.009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.126.009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

我们解决了使用全卷积神经网络(FCN)对任意大图像执行精确(无平纹错误)核心外语义分割推理的问题。FCN模型具有这样的属性,即一旦模型被训练,它可以应用于任意大小的图像,尽管它仍然受到可用GPU内存的限制。这项工作的动机是克服GPU内存大小的限制,而不会对最终结果产生数值影响。我们的方法是选择适合GPU内存的贴片大小,其光晕边界为网络接受域的一半。接下来,在没有光晕的情况下,跨出图像的大小。输入贴图的光晕会重叠,而输出贴图会在接缝处精确地连接。这种方法使推理能够在整个载玻片显微镜图像上执行,例如由载玻片扫描仪生成的图像。这项工作的新颖之处在于记录了确定贴图大小和步幅的公式,然后在U-Net和FC-DenseNet架构上验证它们。此外,我们还量化了由于不满足约束的平铺结构而导致的误差,并探索了使用结构有效接受场来估计平铺参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Tile-Based Segmentation Inference for Images Larger than GPU Memory.

We address the problem of performing exact (tiling-error free) out-of-core semantic segmentation inference of arbitrarily large images using fully convolutional neural networks (FCN). FCN models have the property that once a model is trained, it can be applied on arbitrarily sized images, although it is still constrained by the available GPU memory. This work is motivated by overcoming the GPU memory size constraint without numerically impacting the final result. Our approach is to select a tile size that will fit into GPU memory with a halo border of half the network receptive field. Next, stride across the image by that tile size without the halo. The input tile halos will overlap, while the output tiles join exactly at the seams. Such an approach enables inference to be performed on whole slide microscopy images, such as those generated by a slide scanner. The novelty of this work is in documenting the formulas for determining tile size and stride and then validating them on U-Net and FC-DenseNet architectures. In addition, we quantify the errors due to tiling configurations which do not satisfy the constraints, and we explore the use of architecture effective receptive fields to estimate the tiling parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards. In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research. The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信