建模和解决作业车间调度问题,然后考虑维护操作和对机器的访问限制

Q2 Engineering
Seyed Mohammad Hassan Hosseini
{"title":"建模和解决作业车间调度问题,然后考虑维护操作和对机器的访问限制","authors":"Seyed Mohammad Hassan Hosseini","doi":"10.22094/JOIE.2018.760.1484","DOIUrl":null,"url":null,"abstract":"This paper considers job shop scheduling problem followed by an assembly stage and Lot Streaming (LS). It is supposed here that a number of products have been ordered to be produced. Each product is assembled with a set of several parts. The production system includes two stages. The first stage is a job shop to produce parts. Each machine can process only one part at the same time. The second stage is an assembly shop that contains several parallel machines. Maintenance operations and access restrictions to machines in the first stage are also considered. The objective function is to minimize the completion time of all products (makespan). At first, this problem is described and modelled as a mixed integer linear programming, and GAMS software is applied to solve small-sized problems. Since this problem has been proved to be strongly NP-hard, two new algorithms based on GA and SA are developed to solve the medium- and large-sized problems. In order to verify the effectiveness of the proposed algorithms, a statistical analysis is used along with Relative Percentage Deviation (RPD) factor and well-known criterion. IMP. Various problems are solved by the proposed algorithms. Computational results reveal that both of the two proposed algorithms have good performance. However, the method based on the genetic algorithm performs better than the other proposed algorithm with respect to the objective functi","PeriodicalId":36956,"journal":{"name":"Journal of Optimization in Industrial Engineering","volume":"12 1","pages":"63-78"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modelling and solving the job shop scheduling Problem followed by an assembly stage considering maintenance operations and access restrictions to machines\",\"authors\":\"Seyed Mohammad Hassan Hosseini\",\"doi\":\"10.22094/JOIE.2018.760.1484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers job shop scheduling problem followed by an assembly stage and Lot Streaming (LS). It is supposed here that a number of products have been ordered to be produced. Each product is assembled with a set of several parts. The production system includes two stages. The first stage is a job shop to produce parts. Each machine can process only one part at the same time. The second stage is an assembly shop that contains several parallel machines. Maintenance operations and access restrictions to machines in the first stage are also considered. The objective function is to minimize the completion time of all products (makespan). At first, this problem is described and modelled as a mixed integer linear programming, and GAMS software is applied to solve small-sized problems. Since this problem has been proved to be strongly NP-hard, two new algorithms based on GA and SA are developed to solve the medium- and large-sized problems. In order to verify the effectiveness of the proposed algorithms, a statistical analysis is used along with Relative Percentage Deviation (RPD) factor and well-known criterion. IMP. Various problems are solved by the proposed algorithms. Computational results reveal that both of the two proposed algorithms have good performance. However, the method based on the genetic algorithm performs better than the other proposed algorithm with respect to the objective functi\",\"PeriodicalId\":36956,\"journal\":{\"name\":\"Journal of Optimization in Industrial Engineering\",\"volume\":\"12 1\",\"pages\":\"63-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization in Industrial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22094/JOIE.2018.760.1484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization in Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22094/JOIE.2018.760.1484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

本文考虑装配阶段和批量流(LS)后的车间调度问题。据推测,许多产品已被订购生产。每个产品都由一组几个零件组装而成。生产系统包括两个阶段。第一阶段是一个生产零件的车间。每台机器同时只能处理一个零件。第二阶段是一个装配车间,里面有几个平行的机器。还考虑了第一阶段的维护操作和对机器的访问限制。目标函数是最小化所有产品的完成时间(完工时间)。首先,将该问题描述和建模为混合整数线性规划,并将GAMS软件应用于求解小型问题。由于该问题已被证明是强NP难问题,因此提出了两种基于GA和SA的新算法来解决中大型问题。为了验证所提出算法的有效性,使用了统计分析以及相对百分比偏差(RPD)因子和众所周知的标准。IMP。所提出的算法解决了各种问题。计算结果表明,这两种算法都具有良好的性能。然而,基于遗传算法的方法在目标函数方面比其他算法表现得更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and solving the job shop scheduling Problem followed by an assembly stage considering maintenance operations and access restrictions to machines
This paper considers job shop scheduling problem followed by an assembly stage and Lot Streaming (LS). It is supposed here that a number of products have been ordered to be produced. Each product is assembled with a set of several parts. The production system includes two stages. The first stage is a job shop to produce parts. Each machine can process only one part at the same time. The second stage is an assembly shop that contains several parallel machines. Maintenance operations and access restrictions to machines in the first stage are also considered. The objective function is to minimize the completion time of all products (makespan). At first, this problem is described and modelled as a mixed integer linear programming, and GAMS software is applied to solve small-sized problems. Since this problem has been proved to be strongly NP-hard, two new algorithms based on GA and SA are developed to solve the medium- and large-sized problems. In order to verify the effectiveness of the proposed algorithms, a statistical analysis is used along with Relative Percentage Deviation (RPD) factor and well-known criterion. IMP. Various problems are solved by the proposed algorithms. Computational results reveal that both of the two proposed algorithms have good performance. However, the method based on the genetic algorithm performs better than the other proposed algorithm with respect to the objective functi
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optimization in Industrial Engineering
Journal of Optimization in Industrial Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.90
自引率
0.00%
发文量
0
审稿时长
32 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信