关于q2三角函数及其q2傅立叶变换

S. Arjika
{"title":"关于q2三角函数及其q2傅立叶变换","authors":"S. Arjika","doi":"10.17265/2159-5291/2019.05.003","DOIUrl":null,"url":null,"abstract":"In this paper, we first construct generalized $q^2$-cosine, $q^2$-sine and $q^2$-exponential functions. We then use $q^2$-exponential function in order to define and investigate a $q^2$-Fourier transform. We establish $q$-analogues of inversion and Plancherel theorems.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On q2-Trigonometric Functions and Their q2-Fourier Transform\",\"authors\":\"S. Arjika\",\"doi\":\"10.17265/2159-5291/2019.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first construct generalized $q^2$-cosine, $q^2$-sine and $q^2$-exponential functions. We then use $q^2$-exponential function in order to define and investigate a $q^2$-Fourier transform. We establish $q$-analogues of inversion and Plancherel theorems.\",\"PeriodicalId\":61124,\"journal\":{\"name\":\"数学和系统科学:英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学和系统科学:英文版\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.17265/2159-5291/2019.05.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2019.05.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首先构造了广义q^2$-余弦函数、q^2$-正弦函数和q^2$-指数函数。然后我们使用$q^2$指数函数来定义和研究$q^2$-傅里叶变换。我们建立了反演和Plancherel定理的$q$类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On q2-Trigonometric Functions and Their q2-Fourier Transform
In this paper, we first construct generalized $q^2$-cosine, $q^2$-sine and $q^2$-exponential functions. We then use $q^2$-exponential function in order to define and investigate a $q^2$-Fourier transform. We establish $q$-analogues of inversion and Plancherel theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
450
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信