{"title":"基于大涡模拟和反演的海洋混合层模式改进","authors":"Yeonju Choi, Y. Noh, N. Hirose, Hajoon Song","doi":"10.1175/jtech-d-21-0157.1","DOIUrl":null,"url":null,"abstract":"\nThe ocean mixed layer model (OMLM) is improved using the large eddy simulation (LES) and the inverse estimation method. A comparison of OMLM (Noh model) and LES results reveals that underestimation of the turbulent kinetic energy (TKE) flux in the OMLM causes a negative bias of the mixed layer depth (MLD) during convection, when the wind stress is weak or the latitude is high. It is further found that the entrainment layer thickness is underestimated. The effects of alternative approaches of parameterizations in the OMLM, such as nonlocal mixing, length scales, Prandtl number, and TKE flux, are examined with an aim to reduce the bias. Simultaneous optimizations of empirical constants in the various versions of Noh model with different parameterization options are then carried out via an iterative Green’s function approach with LES data as constraining data. An improved OMLM is obtained, which reflects various new features, including the enhanced TKE flux, and the new model is found to improve the performance in all cases, namely, wind-mixing, surface heating, and surface cooling cases. The effect of the OMLM grid resolution on the optimal empirical constants is also investigated.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of the Ocean Mixed Layer Model via Large Eddy Simulation and Inverse Estimation\",\"authors\":\"Yeonju Choi, Y. Noh, N. Hirose, Hajoon Song\",\"doi\":\"10.1175/jtech-d-21-0157.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe ocean mixed layer model (OMLM) is improved using the large eddy simulation (LES) and the inverse estimation method. A comparison of OMLM (Noh model) and LES results reveals that underestimation of the turbulent kinetic energy (TKE) flux in the OMLM causes a negative bias of the mixed layer depth (MLD) during convection, when the wind stress is weak or the latitude is high. It is further found that the entrainment layer thickness is underestimated. The effects of alternative approaches of parameterizations in the OMLM, such as nonlocal mixing, length scales, Prandtl number, and TKE flux, are examined with an aim to reduce the bias. Simultaneous optimizations of empirical constants in the various versions of Noh model with different parameterization options are then carried out via an iterative Green’s function approach with LES data as constraining data. An improved OMLM is obtained, which reflects various new features, including the enhanced TKE flux, and the new model is found to improve the performance in all cases, namely, wind-mixing, surface heating, and surface cooling cases. The effect of the OMLM grid resolution on the optimal empirical constants is also investigated.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-21-0157.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-21-0157.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Improvement of the Ocean Mixed Layer Model via Large Eddy Simulation and Inverse Estimation
The ocean mixed layer model (OMLM) is improved using the large eddy simulation (LES) and the inverse estimation method. A comparison of OMLM (Noh model) and LES results reveals that underestimation of the turbulent kinetic energy (TKE) flux in the OMLM causes a negative bias of the mixed layer depth (MLD) during convection, when the wind stress is weak or the latitude is high. It is further found that the entrainment layer thickness is underestimated. The effects of alternative approaches of parameterizations in the OMLM, such as nonlocal mixing, length scales, Prandtl number, and TKE flux, are examined with an aim to reduce the bias. Simultaneous optimizations of empirical constants in the various versions of Noh model with different parameterization options are then carried out via an iterative Green’s function approach with LES data as constraining data. An improved OMLM is obtained, which reflects various new features, including the enhanced TKE flux, and the new model is found to improve the performance in all cases, namely, wind-mixing, surface heating, and surface cooling cases. The effect of the OMLM grid resolution on the optimal empirical constants is also investigated.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.