{"title":"基于预定义姿态场和概率松弛的复杂背景行人分割","authors":"C. Amisse, M. E. Jijón-Palma, J. Centeno","doi":"10.1590/s1982-21702021000300017","DOIUrl":null,"url":null,"abstract":"Abstract: The wide use of cameras enables the availability of a large amount of image frames that can be used for people counting or to monitor crowds or single individuals for security purposes. These applications require both, object detection and tracking. This task has shown to be challenging due to problems such as occlusion, deformation, motion blur, and scale variation. One alternative to perform tracking is based on the comparison of features extracted for the individual objects from the image. For this purpose, it is necessary to identify the object of interest, a human image, from the rest of the scene. This paper introduces a method to perform the separation of human bodies from images with changing backgrounds. The method is based on image segmentation, the analysis of the possible pose, and a final refinement step based on probabilistic relaxation. It is the first work we are aware that probabilistic fields computed from human pose figures are combined with an improvement step of relaxation for pedestrian segmentation. The proposed method is evaluated using different image series and the results show that it can work efficiently, but it is dependent on some parameters to be set according to the image contrast and scale. Tests show accuracies above 71%. The method performs well in other datasets, where it achieves results comparable to state-of-the-art approaches.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEDESTRIAN SEGMENTATION FROM COMPLEX BACKGROUND BASED ON PREDEFINED POSE FIELDS AND PROBABILISTIC RELAXATION\",\"authors\":\"C. Amisse, M. E. Jijón-Palma, J. Centeno\",\"doi\":\"10.1590/s1982-21702021000300017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The wide use of cameras enables the availability of a large amount of image frames that can be used for people counting or to monitor crowds or single individuals for security purposes. These applications require both, object detection and tracking. This task has shown to be challenging due to problems such as occlusion, deformation, motion blur, and scale variation. One alternative to perform tracking is based on the comparison of features extracted for the individual objects from the image. For this purpose, it is necessary to identify the object of interest, a human image, from the rest of the scene. This paper introduces a method to perform the separation of human bodies from images with changing backgrounds. The method is based on image segmentation, the analysis of the possible pose, and a final refinement step based on probabilistic relaxation. It is the first work we are aware that probabilistic fields computed from human pose figures are combined with an improvement step of relaxation for pedestrian segmentation. The proposed method is evaluated using different image series and the results show that it can work efficiently, but it is dependent on some parameters to be set according to the image contrast and scale. Tests show accuracies above 71%. The method performs well in other datasets, where it achieves results comparable to state-of-the-art approaches.\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/s1982-21702021000300017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1982-21702021000300017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
PEDESTRIAN SEGMENTATION FROM COMPLEX BACKGROUND BASED ON PREDEFINED POSE FIELDS AND PROBABILISTIC RELAXATION
Abstract: The wide use of cameras enables the availability of a large amount of image frames that can be used for people counting or to monitor crowds or single individuals for security purposes. These applications require both, object detection and tracking. This task has shown to be challenging due to problems such as occlusion, deformation, motion blur, and scale variation. One alternative to perform tracking is based on the comparison of features extracted for the individual objects from the image. For this purpose, it is necessary to identify the object of interest, a human image, from the rest of the scene. This paper introduces a method to perform the separation of human bodies from images with changing backgrounds. The method is based on image segmentation, the analysis of the possible pose, and a final refinement step based on probabilistic relaxation. It is the first work we are aware that probabilistic fields computed from human pose figures are combined with an improvement step of relaxation for pedestrian segmentation. The proposed method is evaluated using different image series and the results show that it can work efficiently, but it is dependent on some parameters to be set according to the image contrast and scale. Tests show accuracies above 71%. The method performs well in other datasets, where it achieves results comparable to state-of-the-art approaches.
期刊介绍:
The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems).
Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.