{"title":"M/G/1-型马尔可夫链的级增量截断逼近的级次几何收敛性","authors":"Katsuhisa Ouchi, H. Masuyama","doi":"10.15807/jorsj.65.198","DOIUrl":null,"url":null,"abstract":"This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is useful for implementing the M/G/1 paradigm, which is the framework for computing the stationary distribution of M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total variation distance between the original stationary distribution and its LI truncation approximation. Suppose that the equilibrium level-increment distribution is subexponential, and that the downward transition matrix is rank one. We then show that the convergence rate of the total variation error of the LI truncation approximation is equal to that of the tail of the equilibrium level-increment distribution and that of the tail of the original stationary distribution.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LEVEL-WISE SUBGEOMETRIC CONVERGENCE OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS\",\"authors\":\"Katsuhisa Ouchi, H. Masuyama\",\"doi\":\"10.15807/jorsj.65.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is useful for implementing the M/G/1 paradigm, which is the framework for computing the stationary distribution of M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total variation distance between the original stationary distribution and its LI truncation approximation. Suppose that the equilibrium level-increment distribution is subexponential, and that the downward transition matrix is rank one. We then show that the convergence rate of the total variation error of the LI truncation approximation is equal to that of the tail of the equilibrium level-increment distribution and that of the tail of the original stationary distribution.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/jorsj.65.198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/jorsj.65.198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
LEVEL-WISE SUBGEOMETRIC CONVERGENCE OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS
This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is useful for implementing the M/G/1 paradigm, which is the framework for computing the stationary distribution of M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total variation distance between the original stationary distribution and its LI truncation approximation. Suppose that the equilibrium level-increment distribution is subexponential, and that the downward transition matrix is rank one. We then show that the convergence rate of the total variation error of the LI truncation approximation is equal to that of the tail of the equilibrium level-increment distribution and that of the tail of the original stationary distribution.
期刊介绍:
The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.