{"title":"轧制纤维组织对挤压Cu-5Al平面微弹簧疲劳性能的影响","authors":"Feiyin Li, Xiubing Wang, Shaojie Ma, X. Dong, Xinping Zhang","doi":"10.1088/1361-6439/acf13a","DOIUrl":null,"url":null,"abstract":"Planar micro spring is an important elastic component in microelectromechanical system devices, and one of its main failures is fatigue. In this work, a new method to improve the cycles of a planar micro spring by introducing pre-rolled fibrous microstructure was proposed. Cu-5Al alloy billets with a fibrous microstructure rolled at room temperature with a reduction ratio of 70% were obtained. Three types of planar micro springs with fibrous microstructure were prepared through extrusion by varying the angle between the fibrous microstructure direction and the extrusion direction. Fatigue tests were conducted using a customized micro-fatigue test system. The best fatigue performance was obtained by preparing the micro springs with the fibrous microstructure direction perpendicular to the extrusion direction, while the worst fatigue performance was obtained by preparing the planar micro springs with the fibrous microstructure direction parallel to the extrusion direction. The fibrous microstructure direction affected the local strain in the micro springs. The fibrous microstructure slightly affected the location of the crack initiation region but significantly affected the area of crack initiation and steady-state expansion region of the micro spring. The fatigue life cycle of extruded Cu-5Al alloy planar micro spring with the pre-rolled fibrous microstructure improved by 58% more than that of extruded Cu-7Al alloy planar micro spring without the pre-rolled fibrous microstructure. Micro spring fatigue life cycle decreased with increasing strain amplitude. This work provides a new approach for preparing planar micro springs with high fatigue performance.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of rolled fibrous microstructure on fatigue properties of extruded Cu-5Al planar micro springs\",\"authors\":\"Feiyin Li, Xiubing Wang, Shaojie Ma, X. Dong, Xinping Zhang\",\"doi\":\"10.1088/1361-6439/acf13a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planar micro spring is an important elastic component in microelectromechanical system devices, and one of its main failures is fatigue. In this work, a new method to improve the cycles of a planar micro spring by introducing pre-rolled fibrous microstructure was proposed. Cu-5Al alloy billets with a fibrous microstructure rolled at room temperature with a reduction ratio of 70% were obtained. Three types of planar micro springs with fibrous microstructure were prepared through extrusion by varying the angle between the fibrous microstructure direction and the extrusion direction. Fatigue tests were conducted using a customized micro-fatigue test system. The best fatigue performance was obtained by preparing the micro springs with the fibrous microstructure direction perpendicular to the extrusion direction, while the worst fatigue performance was obtained by preparing the planar micro springs with the fibrous microstructure direction parallel to the extrusion direction. The fibrous microstructure direction affected the local strain in the micro springs. The fibrous microstructure slightly affected the location of the crack initiation region but significantly affected the area of crack initiation and steady-state expansion region of the micro spring. The fatigue life cycle of extruded Cu-5Al alloy planar micro spring with the pre-rolled fibrous microstructure improved by 58% more than that of extruded Cu-7Al alloy planar micro spring without the pre-rolled fibrous microstructure. Micro spring fatigue life cycle decreased with increasing strain amplitude. This work provides a new approach for preparing planar micro springs with high fatigue performance.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acf13a\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf13a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effects of rolled fibrous microstructure on fatigue properties of extruded Cu-5Al planar micro springs
Planar micro spring is an important elastic component in microelectromechanical system devices, and one of its main failures is fatigue. In this work, a new method to improve the cycles of a planar micro spring by introducing pre-rolled fibrous microstructure was proposed. Cu-5Al alloy billets with a fibrous microstructure rolled at room temperature with a reduction ratio of 70% were obtained. Three types of planar micro springs with fibrous microstructure were prepared through extrusion by varying the angle between the fibrous microstructure direction and the extrusion direction. Fatigue tests were conducted using a customized micro-fatigue test system. The best fatigue performance was obtained by preparing the micro springs with the fibrous microstructure direction perpendicular to the extrusion direction, while the worst fatigue performance was obtained by preparing the planar micro springs with the fibrous microstructure direction parallel to the extrusion direction. The fibrous microstructure direction affected the local strain in the micro springs. The fibrous microstructure slightly affected the location of the crack initiation region but significantly affected the area of crack initiation and steady-state expansion region of the micro spring. The fatigue life cycle of extruded Cu-5Al alloy planar micro spring with the pre-rolled fibrous microstructure improved by 58% more than that of extruded Cu-7Al alloy planar micro spring without the pre-rolled fibrous microstructure. Micro spring fatigue life cycle decreased with increasing strain amplitude. This work provides a new approach for preparing planar micro springs with high fatigue performance.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.