关于极小曲面的Edrei-Goldberg-Ostrovskii定理

Pub Date : 2023-09-06 DOI:10.1007/s10476-023-0230-6
A. Kowalski, I. I. Marchenko
{"title":"关于极小曲面的Edrei-Goldberg-Ostrovskii定理","authors":"A. Kowalski,&nbsp;I. I. Marchenko","doi":"10.1007/s10476-023-0230-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the development of Beckenbach’s theory of the meromorphic minimal surfaces. We consider the relationship between the number of separated maximum points of a meromorphic minimal surface and the Baernstein’s <i>T</i>*-function. The results of Edrei, Goldberg, Heins, Ostrovskii, Wiman are generalized. We also give examples showing that the obtained estimates are sharp.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Edrei–Goldberg–Ostrovskii Theorem for Minimal Surfaces\",\"authors\":\"A. Kowalski,&nbsp;I. I. Marchenko\",\"doi\":\"10.1007/s10476-023-0230-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to the development of Beckenbach’s theory of the meromorphic minimal surfaces. We consider the relationship between the number of separated maximum points of a meromorphic minimal surface and the Baernstein’s <i>T</i>*-function. The results of Edrei, Goldberg, Heins, Ostrovskii, Wiman are generalized. We also give examples showing that the obtained estimates are sharp.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0230-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0230-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于贝肯巴赫亚纯极小曲面理论的发展。我们考虑亚纯极小曲面的分离极大点的个数与Baernstein的T*-函数之间的关系。推广了Edrei、Goldberg、Heins、Ostrovski、Wiman的结果。我们还举例说明了所获得的估计是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Edrei–Goldberg–Ostrovskii Theorem for Minimal Surfaces

This paper is devoted to the development of Beckenbach’s theory of the meromorphic minimal surfaces. We consider the relationship between the number of separated maximum points of a meromorphic minimal surface and the Baernstein’s T*-function. The results of Edrei, Goldberg, Heins, Ostrovskii, Wiman are generalized. We also give examples showing that the obtained estimates are sharp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信