nabla分数边值问题的正解

IF 0.5 Q3 MATHEMATICS
Cubo Pub Date : 2022-12-21 DOI:10.56754/0719-0646.2403.0467
N. S. Gopal, J. Jonnalagadda
{"title":"nabla分数边值问题的正解","authors":"N. S. Gopal, J. Jonnalagadda","doi":"10.56754/0719-0646.2403.0467","DOIUrl":null,"url":null,"abstract":"In this article, we consider the following two-point discrete fractional boundary value problem with constant coefficient associated with Dirichlet boundary conditions. \\begin{equation*} \\begin{cases} -\\big{(}\\nabla^{\\nu}_{\\rho(a)}u\\big{)}(t) + \\lambda u(t) = f(t, u(t)), \\quad t \\in \\mathbb{N}^{b}_{a + 2}, \\\\ u(a) = u(b) = 0, \\end{cases} \\end{equation*} where $1 < \\nu < 2$, $a,b \\in \\mathbb{R}$ with $b-a\\in\\mathbb{N}_{3}$, $\\mathbb{N}^b_{a+2} = \\{a+2,a+3,\\hdots,b\\}$, $|\\lambda| < 1$, $\\nabla^{\\nu}_{\\rho(a)}u$ denotes the $\\nu^{\\text{th}}$-order Riemann--Liouville nabla difference of $u$ based at $\\rho(a)=a-1$, and $f : \\mathbb{N}^{b}_{a + 2} \\times \\mathbb{R} \\rightarrow \\mathbb{R}^{+}$. We make use of Guo--Krasnosels'ki\\v{\\i} and Leggett--Williams fixed-point theorems on suitable cones and under appropriate conditions on the non-linear part of the difference equation. We establish sufficient requirements for at least one, at least two, and at least three positive solutions of the considered boundary value problem. We also provide an example to demonstrate the applicability of established results.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Positive solutions of nabla fractional boundary value problem\",\"authors\":\"N. S. Gopal, J. Jonnalagadda\",\"doi\":\"10.56754/0719-0646.2403.0467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the following two-point discrete fractional boundary value problem with constant coefficient associated with Dirichlet boundary conditions. \\\\begin{equation*} \\\\begin{cases} -\\\\big{(}\\\\nabla^{\\\\nu}_{\\\\rho(a)}u\\\\big{)}(t) + \\\\lambda u(t) = f(t, u(t)), \\\\quad t \\\\in \\\\mathbb{N}^{b}_{a + 2}, \\\\\\\\ u(a) = u(b) = 0, \\\\end{cases} \\\\end{equation*} where $1 < \\\\nu < 2$, $a,b \\\\in \\\\mathbb{R}$ with $b-a\\\\in\\\\mathbb{N}_{3}$, $\\\\mathbb{N}^b_{a+2} = \\\\{a+2,a+3,\\\\hdots,b\\\\}$, $|\\\\lambda| < 1$, $\\\\nabla^{\\\\nu}_{\\\\rho(a)}u$ denotes the $\\\\nu^{\\\\text{th}}$-order Riemann--Liouville nabla difference of $u$ based at $\\\\rho(a)=a-1$, and $f : \\\\mathbb{N}^{b}_{a + 2} \\\\times \\\\mathbb{R} \\\\rightarrow \\\\mathbb{R}^{+}$. We make use of Guo--Krasnosels'ki\\\\v{\\\\i} and Leggett--Williams fixed-point theorems on suitable cones and under appropriate conditions on the non-linear part of the difference equation. We establish sufficient requirements for at least one, at least two, and at least three positive solutions of the considered boundary value problem. We also provide an example to demonstrate the applicability of established results.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2403.0467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2403.0467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑以下与Dirichlet边界条件相关的常系数两点离散分式边值问题。\begin{equation*}\begon{cases}-\big{(}\nabla^{\nu}_{\rho(a)}u\big{)}(t)+\lambda u(t)=f(t,u(t)),\quad t\in\mathbb{N}^{b}_{a+2},\\u(a)=u(b)=0,\end{cases}\end{方程式*}其中$1<\nu<2$,$a,b\in\mathbb{R}$与$b-a\in\math bb{N}_{3} $,$\mathbb{N}^b_{a+2}=\{a+2,a+3,\hdots,b\}$,$|\lambda|<1$,$\nabla^{\nu}_{\rho(a)}u$表示$\nu ^{\text{th}}$阶黎曼-刘维尔-纳布拉差$u$,基于$\rho^{b}_{a+2}\times\mathbb{R}\rightarrow\mathbb{R}^{+}$。在差分方程非线性部分的适当锥上和适当条件下,我们利用了Guo-Krasnosels的ki和Leggett-Williams不动点定理。我们对所考虑的边值问题的至少一个、至少两个和至少三个正解建立了充分的要求。我们还提供了一个例子来证明既定结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive solutions of nabla fractional boundary value problem
In this article, we consider the following two-point discrete fractional boundary value problem with constant coefficient associated with Dirichlet boundary conditions. \begin{equation*} \begin{cases} -\big{(}\nabla^{\nu}_{\rho(a)}u\big{)}(t) + \lambda u(t) = f(t, u(t)), \quad t \in \mathbb{N}^{b}_{a + 2}, \\ u(a) = u(b) = 0, \end{cases} \end{equation*} where $1 < \nu < 2$, $a,b \in \mathbb{R}$ with $b-a\in\mathbb{N}_{3}$, $\mathbb{N}^b_{a+2} = \{a+2,a+3,\hdots,b\}$, $|\lambda| < 1$, $\nabla^{\nu}_{\rho(a)}u$ denotes the $\nu^{\text{th}}$-order Riemann--Liouville nabla difference of $u$ based at $\rho(a)=a-1$, and $f : \mathbb{N}^{b}_{a + 2} \times \mathbb{R} \rightarrow \mathbb{R}^{+}$. We make use of Guo--Krasnosels'ki\v{\i} and Leggett--Williams fixed-point theorems on suitable cones and under appropriate conditions on the non-linear part of the difference equation. We establish sufficient requirements for at least one, at least two, and at least three positive solutions of the considered boundary value problem. We also provide an example to demonstrate the applicability of established results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信