Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira
{"title":"黎曼乘积中具有规定接触角的非参数平均曲率流","authors":"Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira","doi":"10.1515/agms-2020-0132","DOIUrl":null,"url":null,"abstract":"Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"10 1","pages":"31 - 39"},"PeriodicalIF":0.9000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products\",\"authors\":\"Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira\",\"doi\":\"10.1515/agms-2020-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"10 1\",\"pages\":\"31 - 39\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0132\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products
Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.