黎曼乘积中具有规定接触角的非参数平均曲率流

Pub Date : 2020-07-08 DOI:10.1515/agms-2020-0132
Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira
{"title":"黎曼乘积中具有规定接触角的非参数平均曲率流","authors":"Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira","doi":"10.1515/agms-2020-0132","DOIUrl":null,"url":null,"abstract":"Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products\",\"authors\":\"Jean-Baptiste Casteras, E. Heinonen, I. Holopainen, J. D. de Lira\",\"doi\":\"10.1515/agms-2020-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:假设在Ω域中存在一个速度为C的平移孤子u∞,并且在∂Ω上具有规定的接触角,证明了具有相同规定接触角的平均曲率流的图形解收敛于u∞+ Ct,使t→∞。我们还将Gao, Ma, Wang和Weng最近的存在性结果推广到Ω和Ω中Ricci曲率在合适的凸性边界下的非欧几里德集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products
Abstract Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angle converges to u∞ + Ct as t →∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信