{"title":"基于轻量级深度卷积神经网络的疟疾诊断","authors":"Varun Magotra, Mukesh Kumar Rohil","doi":"10.1155/2022/4176982","DOIUrl":null,"url":null,"abstract":"The applications of AI in the healthcare sector are increasing day by day. The application of convolutional neural network (CNN) and mask-region-based CNN (Mask-RCCN) to the medical domain has really revolutionized medical image analysis. CNNs have been prominently used for identification, classification, and feature extraction tasks, and they have delivered a great performance at these tasks. In our study, we propose a lightweight CNN, which requires less time to train, for identifying malaria parasitic red blood cells and distinguishing them from healthy red blood cells. To compare the accuracy of our model, we used transfer learning on two models, namely, the VGG-19 and the Inception v3. We train our model in three different configurations depending on the proportion of data being fed to the model for training. For all three configurations, our proposed model is able to achieve an accuracy of around 96%, which is higher than both the other models that we trained for the same three configurations. It shows that our model is able to perform better along with low computational requirements. Therefore, it can be used more efficiently and can be easily deployed for detecting malaria cells.","PeriodicalId":45630,"journal":{"name":"International Journal of Telemedicine and Applications","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network\",\"authors\":\"Varun Magotra, Mukesh Kumar Rohil\",\"doi\":\"10.1155/2022/4176982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The applications of AI in the healthcare sector are increasing day by day. The application of convolutional neural network (CNN) and mask-region-based CNN (Mask-RCCN) to the medical domain has really revolutionized medical image analysis. CNNs have been prominently used for identification, classification, and feature extraction tasks, and they have delivered a great performance at these tasks. In our study, we propose a lightweight CNN, which requires less time to train, for identifying malaria parasitic red blood cells and distinguishing them from healthy red blood cells. To compare the accuracy of our model, we used transfer learning on two models, namely, the VGG-19 and the Inception v3. We train our model in three different configurations depending on the proportion of data being fed to the model for training. For all three configurations, our proposed model is able to achieve an accuracy of around 96%, which is higher than both the other models that we trained for the same three configurations. It shows that our model is able to perform better along with low computational requirements. Therefore, it can be used more efficiently and can be easily deployed for detecting malaria cells.\",\"PeriodicalId\":45630,\"journal\":{\"name\":\"International Journal of Telemedicine and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Telemedicine and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4176982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Telemedicine and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4176982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network
The applications of AI in the healthcare sector are increasing day by day. The application of convolutional neural network (CNN) and mask-region-based CNN (Mask-RCCN) to the medical domain has really revolutionized medical image analysis. CNNs have been prominently used for identification, classification, and feature extraction tasks, and they have delivered a great performance at these tasks. In our study, we propose a lightweight CNN, which requires less time to train, for identifying malaria parasitic red blood cells and distinguishing them from healthy red blood cells. To compare the accuracy of our model, we used transfer learning on two models, namely, the VGG-19 and the Inception v3. We train our model in three different configurations depending on the proportion of data being fed to the model for training. For all three configurations, our proposed model is able to achieve an accuracy of around 96%, which is higher than both the other models that we trained for the same three configurations. It shows that our model is able to perform better along with low computational requirements. Therefore, it can be used more efficiently and can be easily deployed for detecting malaria cells.
期刊介绍:
The overall aim of the International Journal of Telemedicine and Applications is to bring together science and applications of medical practice and medical care at a distance as well as their supporting technologies such as, computing, communications, and networking technologies with emphasis on telemedicine techniques and telemedicine applications. It is directed at practicing engineers, academic researchers, as well as doctors, nurses, etc. Telemedicine is an information technology that enables doctors to perform medical consultations, diagnoses, and treatments, as well as medical education, away from patients. For example, doctors can remotely examine patients via remote viewing monitors and sound devices, and/or sampling physiological data using telecommunication. Telemedicine technology is applied to areas of emergency healthcare, videoconsulting, telecardiology, telepathology, teledermatology, teleophthalmology, teleoncology, telepsychiatry, teledentistry, etc. International Journal of Telemedicine and Applications will highlight the continued growth and new challenges in telemedicine, applications, and their supporting technologies, for both application development and basic research. Papers should emphasize original results or case studies relating to the theory and/or applications of telemedicine. Tutorial papers, especially those emphasizing multidisciplinary views of telemedicine, are also welcome. International Journal of Telemedicine and Applications employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.