冈本函数对参数的偏导数

IF 0.1 Q4 MATHEMATICS
Nathan Dalaklis, K. Kawamura, Tobey Mathis, Michalis Paizanis
{"title":"冈本函数对参数的偏导数","authors":"Nathan Dalaklis, K. Kawamura, Tobey Mathis, Michalis Paizanis","doi":"10.14321/realanalexch.48.1.1638769133","DOIUrl":null,"url":null,"abstract":"The differentiability of the one parameter family of Okomoto's functions as functions of $x$ has been analyzed extensively since their introduction in 2005. As an analogue to a similar investigation, in this paper, we consider the partial derivative of Okomoto's functions with respect to the parameter $a$. We place a significant focus on $a = 1/3$ to describe the properties of a nowhere differentiable function $K(x)$ for which the set of points of infinite derivative produces an example of a measure zero set with Hausdorff dimension $1$.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Partial Derivative of Okamoto's Functions with Respect to the Parameter\",\"authors\":\"Nathan Dalaklis, K. Kawamura, Tobey Mathis, Michalis Paizanis\",\"doi\":\"10.14321/realanalexch.48.1.1638769133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The differentiability of the one parameter family of Okomoto's functions as functions of $x$ has been analyzed extensively since their introduction in 2005. As an analogue to a similar investigation, in this paper, we consider the partial derivative of Okomoto's functions with respect to the parameter $a$. We place a significant focus on $a = 1/3$ to describe the properties of a nowhere differentiable function $K(x)$ for which the set of points of infinite derivative produces an example of a measure zero set with Hausdorff dimension $1$.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.48.1.1638769133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.48.1.1638769133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

Okomoto函数的单参数族作为$x$函数的可微性自2005年引入以来已经得到了广泛的分析。作为类似研究的一个类比,在本文中,我们考虑Okomoto函数关于参数$a$的偏导数。我们将重点放在$a=1/3$上,以描述无处可微函数$K(x)$的性质,对于该函数,无穷导数的点集产生了Hausdorff维数为$1$的测度零集的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Partial Derivative of Okamoto's Functions with Respect to the Parameter
The differentiability of the one parameter family of Okomoto's functions as functions of $x$ has been analyzed extensively since their introduction in 2005. As an analogue to a similar investigation, in this paper, we consider the partial derivative of Okomoto's functions with respect to the parameter $a$. We place a significant focus on $a = 1/3$ to describe the properties of a nowhere differentiable function $K(x)$ for which the set of points of infinite derivative produces an example of a measure zero set with Hausdorff dimension $1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信