{"title":"不同铺层构型混合层合板铝碳纤维接头的试验与有限元研究","authors":"R. Carbas, Miguel P. Palmares, L. D. da Silva","doi":"10.1051/mfreview/2019027","DOIUrl":null,"url":null,"abstract":"The use of composite materials in industry is growing due to various technological advances in composite materials accompanied by improvements in the structural adhesives used to bond them. Fibre metal laminates (FML's) are hybrid composite structures based on thin sheets of metal alloys and plies of fibre-reinforced polymeric materials. The fibre/metal composite technology combines the advantages of metallic materials and fibre-reinforced matrix systems. The aim of the present study is to use a concept similar to that used in FML to increase the peel strength of composite materials and increase the joint strength of hybrid laminates aluminium carbon-fibre adhesive joints. Carbon fibre-reinforced plastic (CFRP) composites were modified by including one or several aluminium sheets during the laminate manufacture to enhance the composite through the thickness properties. The objective was to identify the joint configuration that gives the best joint strength improvement in relation to the CFRP only reference joint. An adhesive developed for the aeronautical industry was used to manufacture single lap joints for tensile testing. Experimental and numerical studies were undertaken on modified CFRP joints to investigate the joint strength of different lay-up solutions to prevent delamination of adherends.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2019027","citationCount":"10","resultStr":"{\"title\":\"Experimental and FE study of hybrid laminates aluminium carbon-fibre joints with different lay-up configurations\",\"authors\":\"R. Carbas, Miguel P. Palmares, L. D. da Silva\",\"doi\":\"10.1051/mfreview/2019027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of composite materials in industry is growing due to various technological advances in composite materials accompanied by improvements in the structural adhesives used to bond them. Fibre metal laminates (FML's) are hybrid composite structures based on thin sheets of metal alloys and plies of fibre-reinforced polymeric materials. The fibre/metal composite technology combines the advantages of metallic materials and fibre-reinforced matrix systems. The aim of the present study is to use a concept similar to that used in FML to increase the peel strength of composite materials and increase the joint strength of hybrid laminates aluminium carbon-fibre adhesive joints. Carbon fibre-reinforced plastic (CFRP) composites were modified by including one or several aluminium sheets during the laminate manufacture to enhance the composite through the thickness properties. The objective was to identify the joint configuration that gives the best joint strength improvement in relation to the CFRP only reference joint. An adhesive developed for the aeronautical industry was used to manufacture single lap joints for tensile testing. Experimental and numerical studies were undertaken on modified CFRP joints to investigate the joint strength of different lay-up solutions to prevent delamination of adherends.\",\"PeriodicalId\":51873,\"journal\":{\"name\":\"Manufacturing Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/mfreview/2019027\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/mfreview/2019027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2019027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Experimental and FE study of hybrid laminates aluminium carbon-fibre joints with different lay-up configurations
The use of composite materials in industry is growing due to various technological advances in composite materials accompanied by improvements in the structural adhesives used to bond them. Fibre metal laminates (FML's) are hybrid composite structures based on thin sheets of metal alloys and plies of fibre-reinforced polymeric materials. The fibre/metal composite technology combines the advantages of metallic materials and fibre-reinforced matrix systems. The aim of the present study is to use a concept similar to that used in FML to increase the peel strength of composite materials and increase the joint strength of hybrid laminates aluminium carbon-fibre adhesive joints. Carbon fibre-reinforced plastic (CFRP) composites were modified by including one or several aluminium sheets during the laminate manufacture to enhance the composite through the thickness properties. The objective was to identify the joint configuration that gives the best joint strength improvement in relation to the CFRP only reference joint. An adhesive developed for the aeronautical industry was used to manufacture single lap joints for tensile testing. Experimental and numerical studies were undertaken on modified CFRP joints to investigate the joint strength of different lay-up solutions to prevent delamination of adherends.
期刊介绍:
The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.