{"title":"Leonard配对的兼容性和同伴","authors":"K. Nomura, Paul M. Terwilliger","doi":"10.13001/ela.2022.6861","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concepts of compatibility and companion for Leonard pairs. These concepts are roughly described as follows. Let $\\mathbb{F}$ denote a field, and let $V$ denote a vector space over $\\mathbb{F}$ with finite positive dimension.A Leonard pair on $V$ is an ordered pair of diagonalizable $\\mathbb{F}$-linear maps $A : V \\to V$ and $A^* : V \\to V$ that each act in an irreducible tridiagonal fashion on an eigenbasis for the other one. Leonard pairs $A,A^*$ and $B,B^*$ on $V$ are said to be compatible whenever $A^* = B^*$ and $[A,A^*] = [B,B^*]$, where $[r,s] = r s - s r$. For a Leonard pair $A,A^*$ on $V$, by a companion of $A,A^*$ we mean an $\\mathbb{F}$-linear map $K: V \\to V$ such that $K$ is a polynomial in $A^*$ and $A-K, A^*$ is a Leonard pair on $V$. The concepts of compatibility and companion are related as follows. For compatible Leonard pairs $A,A^*$ and $B,B^*$ on $V$, define $K = A-B$. Then $K$ is a companion of $A,A^*$. For a Leonard pair $A,A^*$ on $V$ and a companion $K$ of $A,A^*$,define $B = A-K$ and $B^* = A^*$. Then $B,B^*$ is a Leonard pair on $V$ that is compatible with $A,A^*$. Let $A,A^*$ denote a Leonard pair on $V$. We find all the Leonard pairs $B, B^*$ on $V$ that are compatible with $A,A^*$.For each solution $B, B^*$, we describe the corresponding companion $K = A-B$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compatibility and companions for Leonard pairs\",\"authors\":\"K. Nomura, Paul M. Terwilliger\",\"doi\":\"10.13001/ela.2022.6861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concepts of compatibility and companion for Leonard pairs. These concepts are roughly described as follows. Let $\\\\mathbb{F}$ denote a field, and let $V$ denote a vector space over $\\\\mathbb{F}$ with finite positive dimension.A Leonard pair on $V$ is an ordered pair of diagonalizable $\\\\mathbb{F}$-linear maps $A : V \\\\to V$ and $A^* : V \\\\to V$ that each act in an irreducible tridiagonal fashion on an eigenbasis for the other one. Leonard pairs $A,A^*$ and $B,B^*$ on $V$ are said to be compatible whenever $A^* = B^*$ and $[A,A^*] = [B,B^*]$, where $[r,s] = r s - s r$. For a Leonard pair $A,A^*$ on $V$, by a companion of $A,A^*$ we mean an $\\\\mathbb{F}$-linear map $K: V \\\\to V$ such that $K$ is a polynomial in $A^*$ and $A-K, A^*$ is a Leonard pair on $V$. The concepts of compatibility and companion are related as follows. For compatible Leonard pairs $A,A^*$ and $B,B^*$ on $V$, define $K = A-B$. Then $K$ is a companion of $A,A^*$. For a Leonard pair $A,A^*$ on $V$ and a companion $K$ of $A,A^*$,define $B = A-K$ and $B^* = A^*$. Then $B,B^*$ is a Leonard pair on $V$ that is compatible with $A,A^*$. Let $A,A^*$ denote a Leonard pair on $V$. We find all the Leonard pairs $B, B^*$ on $V$ that are compatible with $A,A^*$.For each solution $B, B^*$, we describe the corresponding companion $K = A-B$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文引入了伦纳德对的相容性和伴生的概念。这些概念大致描述如下。设$\mathbb{F}$表示一个域,设$V$表示$\mathbb{F}$上一个有限正维的向量空间。$V$上的伦纳德对是$\mathbb{F}$的可对角线性映射$A: V \到V$和$A^*: V \到V$的有序对,它们在另一个的特征基上以不可约的三对角方式作用。当$A^* = B^*$和$[A,A^*] = [B,B^*]$时,$V$上的$A,A^*$和$B,B^*$被认为是兼容的,其中$[r,s] = rs - s r$。对于$V$上的伦纳德对$ a, a ^*$,通过$ a, a ^*$的伴星我们指$\mathbb{F}$-线性映射$K: V$,使得$K$是$ a ^*$和$ a -K, a ^*$是$V$上的伦纳德对。兼容性和伴侣的概念相关如下。对于$V$上的兼容伦纳德对$A,A^*$和$B,B^*$,定义$K = A-B$。那么$K$是$ a的伴星,a ^*$。对于$V$上的伦纳德对$ a, a ^*$和$ a, a ^*$的伴生$K$,定义$B = a -K$和$B^* = a ^*$。则$B,B^*$是$V$上与$ a, a ^*$兼容的伦纳德对。设$A,A^*$表示$V$上的伦纳德对。我们在$V$上找到与$A,A^*$相容的所有伦纳德对$B, B^*$。对于每个解$B, B^*$,我们描述对应的伴解$K = A-B$。
In this paper, we introduce the concepts of compatibility and companion for Leonard pairs. These concepts are roughly described as follows. Let $\mathbb{F}$ denote a field, and let $V$ denote a vector space over $\mathbb{F}$ with finite positive dimension.A Leonard pair on $V$ is an ordered pair of diagonalizable $\mathbb{F}$-linear maps $A : V \to V$ and $A^* : V \to V$ that each act in an irreducible tridiagonal fashion on an eigenbasis for the other one. Leonard pairs $A,A^*$ and $B,B^*$ on $V$ are said to be compatible whenever $A^* = B^*$ and $[A,A^*] = [B,B^*]$, where $[r,s] = r s - s r$. For a Leonard pair $A,A^*$ on $V$, by a companion of $A,A^*$ we mean an $\mathbb{F}$-linear map $K: V \to V$ such that $K$ is a polynomial in $A^*$ and $A-K, A^*$ is a Leonard pair on $V$. The concepts of compatibility and companion are related as follows. For compatible Leonard pairs $A,A^*$ and $B,B^*$ on $V$, define $K = A-B$. Then $K$ is a companion of $A,A^*$. For a Leonard pair $A,A^*$ on $V$ and a companion $K$ of $A,A^*$,define $B = A-K$ and $B^* = A^*$. Then $B,B^*$ is a Leonard pair on $V$ that is compatible with $A,A^*$. Let $A,A^*$ denote a Leonard pair on $V$. We find all the Leonard pairs $B, B^*$ on $V$ that are compatible with $A,A^*$.For each solution $B, B^*$, we describe the corresponding companion $K = A-B$.