关于二元防策略社会选择函数的注解

IF 0.6 Q4 ECONOMICS
Games Pub Date : 2022-11-18 DOI:10.3390/g13060078
A. Basile, A. Simone, C. Tarantino
{"title":"关于二元防策略社会选择函数的注解","authors":"A. Basile, A. Simone, C. Tarantino","doi":"10.3390/g13060078","DOIUrl":null,"url":null,"abstract":"Let Φn be the set of the binary strategy-proof social choice functions referred to a group of n voters who are allowed to declare indifference between the alternatives. We provide a recursive way to obtain the set Φn+1 from the set Φn. Computing the cardinalities |Φn| presents difficulties as the computation of the Dedekind numbers. The latter give the analogous number of social choice functions when only strict preferences are admitted. A comparison is given for the known values. Based on our results, we present a graphical description of the binary strategy-proof social choice functions in the case of three voters.","PeriodicalId":35065,"journal":{"name":"Games","volume":"13 1","pages":"78"},"PeriodicalIF":0.6000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Binary Strategy-Proof Social Choice Functions\",\"authors\":\"A. Basile, A. Simone, C. Tarantino\",\"doi\":\"10.3390/g13060078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Φn be the set of the binary strategy-proof social choice functions referred to a group of n voters who are allowed to declare indifference between the alternatives. We provide a recursive way to obtain the set Φn+1 from the set Φn. Computing the cardinalities |Φn| presents difficulties as the computation of the Dedekind numbers. The latter give the analogous number of social choice functions when only strict preferences are admitted. A comparison is given for the known values. Based on our results, we present a graphical description of the binary strategy-proof social choice functions in the case of three voters.\",\"PeriodicalId\":35065,\"journal\":{\"name\":\"Games\",\"volume\":\"13 1\",\"pages\":\"78\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/g13060078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g13060078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

设Φn为二元策略证明的社会选择函数的集合,指的是一组n个选民,他们被允许在两个选项之间宣布冷漠。我们提供了一种从集合Φn获得集合Φn+1的递归方法。计算基数|Φn|在计算Dedekind数时存在困难。后者给出了当只允许严格偏好时类似数量的社会选择函数。给出了已知值的比较。基于我们的结果,我们给出了三个选民情况下二元策略证明的社会选择函数的图形描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Binary Strategy-Proof Social Choice Functions
Let Φn be the set of the binary strategy-proof social choice functions referred to a group of n voters who are allowed to declare indifference between the alternatives. We provide a recursive way to obtain the set Φn+1 from the set Φn. Computing the cardinalities |Φn| presents difficulties as the computation of the Dedekind numbers. The latter give the analogous number of social choice functions when only strict preferences are admitted. A comparison is given for the known values. Based on our results, we present a graphical description of the binary strategy-proof social choice functions in the case of three voters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Games
Games Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.60
自引率
11.10%
发文量
65
审稿时长
11 weeks
期刊介绍: Games (ISSN 2073-4336) is an international, peer-reviewed, quick-refereeing open access journal (free for readers), which provides an advanced forum for studies related to strategic interaction, game theory and its applications, and decision making. The aim is to provide an interdisciplinary forum for all behavioral sciences and related fields, including economics, psychology, political science, mathematics, computer science, and biology (including animal behavior). To guarantee a rapid refereeing and editorial process, Games follows standard publication practices in the natural sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信