C. Billerbeck, Ligia Monteiro da Silva, S. S. Marcellini, A. M. Méllo Júnior
{"title":"评估皮拉西卡巴河流域偏差校正气候变化预测的多准则决策框架","authors":"C. Billerbeck, Ligia Monteiro da Silva, S. S. Marcellini, A. M. Méllo Júnior","doi":"10.1590/0102-77863630068","DOIUrl":null,"url":null,"abstract":"Abstract Regional climate models (RCM) are the main tools for climate change impacts assessment in hydrological studies. These models, however, often show biases when compared to historical observations. Bias Correction (BC) are useful techniques to improve climate projection outputs. This study presents a multi-criteria decision analysis (MCDA) framework to compare combinations of RCM with selected BC methods. The comparison was based on the modified Kling-Gupta efficiency (KGE’). The criteria evaluated the general capability of models in reproducing the observed data main statistics. Other criteria evaluated were the relevant aspects for hydrological studies, such as seasonality, dry and wet periods. We applied four BC methods in four RCM monthly rainfall outputs from 1961 to 2005 in the Piracicaba river basin. The Linear Scaling (LS) method showed higher improvements in the general performance of the models. The RCM Eta-HadGEM2-ES, corrected with Standardized Reconstruction (SdRc) method, achieved the best results when compared to the observed precipitation. The bias corrected projected monthly precipitation (2006-2098) preserved the main signal of climate change effects when compared to the original outputs regarding annual rainfall. However, SdRc produced significant decrease in monthly average rainfall, higher than 45% for July, August and September for RCP4.5 and RCP8.5 scenarios.","PeriodicalId":38345,"journal":{"name":"Revista Brasileira de Meteorologia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Criteria Decision Framework to Evaluate Bias Corrected Climate Change Projections in the Piracicaba River Basin\",\"authors\":\"C. Billerbeck, Ligia Monteiro da Silva, S. S. Marcellini, A. M. Méllo Júnior\",\"doi\":\"10.1590/0102-77863630068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Regional climate models (RCM) are the main tools for climate change impacts assessment in hydrological studies. These models, however, often show biases when compared to historical observations. Bias Correction (BC) are useful techniques to improve climate projection outputs. This study presents a multi-criteria decision analysis (MCDA) framework to compare combinations of RCM with selected BC methods. The comparison was based on the modified Kling-Gupta efficiency (KGE’). The criteria evaluated the general capability of models in reproducing the observed data main statistics. Other criteria evaluated were the relevant aspects for hydrological studies, such as seasonality, dry and wet periods. We applied four BC methods in four RCM monthly rainfall outputs from 1961 to 2005 in the Piracicaba river basin. The Linear Scaling (LS) method showed higher improvements in the general performance of the models. The RCM Eta-HadGEM2-ES, corrected with Standardized Reconstruction (SdRc) method, achieved the best results when compared to the observed precipitation. The bias corrected projected monthly precipitation (2006-2098) preserved the main signal of climate change effects when compared to the original outputs regarding annual rainfall. However, SdRc produced significant decrease in monthly average rainfall, higher than 45% for July, August and September for RCP4.5 and RCP8.5 scenarios.\",\"PeriodicalId\":38345,\"journal\":{\"name\":\"Revista Brasileira de Meteorologia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Meteorologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0102-77863630068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Meteorologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0102-77863630068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Multi-Criteria Decision Framework to Evaluate Bias Corrected Climate Change Projections in the Piracicaba River Basin
Abstract Regional climate models (RCM) are the main tools for climate change impacts assessment in hydrological studies. These models, however, often show biases when compared to historical observations. Bias Correction (BC) are useful techniques to improve climate projection outputs. This study presents a multi-criteria decision analysis (MCDA) framework to compare combinations of RCM with selected BC methods. The comparison was based on the modified Kling-Gupta efficiency (KGE’). The criteria evaluated the general capability of models in reproducing the observed data main statistics. Other criteria evaluated were the relevant aspects for hydrological studies, such as seasonality, dry and wet periods. We applied four BC methods in four RCM monthly rainfall outputs from 1961 to 2005 in the Piracicaba river basin. The Linear Scaling (LS) method showed higher improvements in the general performance of the models. The RCM Eta-HadGEM2-ES, corrected with Standardized Reconstruction (SdRc) method, achieved the best results when compared to the observed precipitation. The bias corrected projected monthly precipitation (2006-2098) preserved the main signal of climate change effects when compared to the original outputs regarding annual rainfall. However, SdRc produced significant decrease in monthly average rainfall, higher than 45% for July, August and September for RCP4.5 and RCP8.5 scenarios.