时间分数反应扩散方程在不同时间尺度上的Green函数

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Zhokh, P. Strizhak
{"title":"时间分数反应扩散方程在不同时间尺度上的Green函数","authors":"A. Zhokh, P. Strizhak","doi":"10.1155/2023/6646284","DOIUrl":null,"url":null,"abstract":"The time-fractional diffusion equation coupled with a first-order irreversible reaction is investigated by employing integral transforms. We derive Green’s functions for short and long times via approximations of the Mittag-Leffler function. The time value for which the crossover between short- and long-time asymptotic holds is presented in explicit form. Based on the developed Green’s functions, the exact analytic asymptotic solutions of the time-fractional reaction-diffusion equation are obtained. The applicability of the obtained solutions is demonstrated via quantification of the reaction-diffusion kinetics during heterogeneous catalytic chitin conversion to chitosan.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green’s Functions on Various Time Scales for the Time-Fractional Reaction-Diffusion Equation\",\"authors\":\"A. Zhokh, P. Strizhak\",\"doi\":\"10.1155/2023/6646284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time-fractional diffusion equation coupled with a first-order irreversible reaction is investigated by employing integral transforms. We derive Green’s functions for short and long times via approximations of the Mittag-Leffler function. The time value for which the crossover between short- and long-time asymptotic holds is presented in explicit form. Based on the developed Green’s functions, the exact analytic asymptotic solutions of the time-fractional reaction-diffusion equation are obtained. The applicability of the obtained solutions is demonstrated via quantification of the reaction-diffusion kinetics during heterogeneous catalytic chitin conversion to chitosan.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6646284\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/6646284","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用积分变换研究了一阶不可逆反应的时间分数扩散方程。我们通过对Mittag-Leffler函数的近似,导出了短时间和长时间的Green函数。以显式形式给出了短时间和长时间渐近交叉成立的时间值。基于发展的格林函数,得到了时间分数反应扩散方程的精确解析渐近解。通过定量多相催化甲壳素转化为壳聚糖过程中的反应-扩散动力学,证明了所获得的溶液的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green’s Functions on Various Time Scales for the Time-Fractional Reaction-Diffusion Equation
The time-fractional diffusion equation coupled with a first-order irreversible reaction is investigated by employing integral transforms. We derive Green’s functions for short and long times via approximations of the Mittag-Leffler function. The time value for which the crossover between short- and long-time asymptotic holds is presented in explicit form. Based on the developed Green’s functions, the exact analytic asymptotic solutions of the time-fractional reaction-diffusion equation are obtained. The applicability of the obtained solutions is demonstrated via quantification of the reaction-diffusion kinetics during heterogeneous catalytic chitin conversion to chitosan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信