{"title":"风荷载作用下变布置三体船在规则波和不规则波中的非线性横摇稳定性与混沌研究","authors":"Yihan Zhang, Ping Wang, Ya-chong Liu, Jingfeng Hu","doi":"10.21278/brod72307","DOIUrl":null,"url":null,"abstract":"The trimaran vessel rolls strongly at low forward speed and may capsize in high sea conditions due to chaos and loss of stability, which is not usually considered in conventional limit-based criteria. In order to perfect the method of measuring roll performance of trimaran, a set of nonlinear roll motion stability analysis method based on Lyapunov and Melnikov theory was established. The nonlinear roll motion equation was constructed by CFD and high-order polynomial fitting method. The wave force threshold of rolling chaos in regular waves is calculated by Gauss-Legendre numerical integration method. The limited significant wave height of rolling chaos in random sea conditions is deduced by the phase space transfer rate, and the complex effect of wind load is superposed in the calculation. The influence of trimaran configuration on the roll system is analyzed through the state differentiation of homoclinic and heteroclinic orbit in phase portrait. The calculation of the maximum Lyapunov exponent further verified the applicability of Melnikov method, and the topological structure change of gradual failure of the rolling system is analyzed by the erosion of safe basin. The complex changes of the nonlinear damping coefficient and the nonlinear restoring moment coefficient caused by the change of the transverse lay-outs between the main hull and side hull have a significant influence on chaos and stability, and the existence of wind load has a certain weakening effect on the stability and symmetry of the system. The conclusion also further indicates the importance of the lay-outs to the dynamic stability of the trimaran vessel, which is significant for its seakeeping design.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"NONLINEAR ROLLING STABILITY AND CHAOS RESEARCH OF TRIMARAN VESSEL WITH VARIABLE LAY-OUTS IN REGULAR AND IRREGULAR WAVES UNDER WIND LOAD\",\"authors\":\"Yihan Zhang, Ping Wang, Ya-chong Liu, Jingfeng Hu\",\"doi\":\"10.21278/brod72307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trimaran vessel rolls strongly at low forward speed and may capsize in high sea conditions due to chaos and loss of stability, which is not usually considered in conventional limit-based criteria. In order to perfect the method of measuring roll performance of trimaran, a set of nonlinear roll motion stability analysis method based on Lyapunov and Melnikov theory was established. The nonlinear roll motion equation was constructed by CFD and high-order polynomial fitting method. The wave force threshold of rolling chaos in regular waves is calculated by Gauss-Legendre numerical integration method. The limited significant wave height of rolling chaos in random sea conditions is deduced by the phase space transfer rate, and the complex effect of wind load is superposed in the calculation. The influence of trimaran configuration on the roll system is analyzed through the state differentiation of homoclinic and heteroclinic orbit in phase portrait. The calculation of the maximum Lyapunov exponent further verified the applicability of Melnikov method, and the topological structure change of gradual failure of the rolling system is analyzed by the erosion of safe basin. The complex changes of the nonlinear damping coefficient and the nonlinear restoring moment coefficient caused by the change of the transverse lay-outs between the main hull and side hull have a significant influence on chaos and stability, and the existence of wind load has a certain weakening effect on the stability and symmetry of the system. The conclusion also further indicates the importance of the lay-outs to the dynamic stability of the trimaran vessel, which is significant for its seakeeping design.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod72307\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod72307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
NONLINEAR ROLLING STABILITY AND CHAOS RESEARCH OF TRIMARAN VESSEL WITH VARIABLE LAY-OUTS IN REGULAR AND IRREGULAR WAVES UNDER WIND LOAD
The trimaran vessel rolls strongly at low forward speed and may capsize in high sea conditions due to chaos and loss of stability, which is not usually considered in conventional limit-based criteria. In order to perfect the method of measuring roll performance of trimaran, a set of nonlinear roll motion stability analysis method based on Lyapunov and Melnikov theory was established. The nonlinear roll motion equation was constructed by CFD and high-order polynomial fitting method. The wave force threshold of rolling chaos in regular waves is calculated by Gauss-Legendre numerical integration method. The limited significant wave height of rolling chaos in random sea conditions is deduced by the phase space transfer rate, and the complex effect of wind load is superposed in the calculation. The influence of trimaran configuration on the roll system is analyzed through the state differentiation of homoclinic and heteroclinic orbit in phase portrait. The calculation of the maximum Lyapunov exponent further verified the applicability of Melnikov method, and the topological structure change of gradual failure of the rolling system is analyzed by the erosion of safe basin. The complex changes of the nonlinear damping coefficient and the nonlinear restoring moment coefficient caused by the change of the transverse lay-outs between the main hull and side hull have a significant influence on chaos and stability, and the existence of wind load has a certain weakening effect on the stability and symmetry of the system. The conclusion also further indicates the importance of the lay-outs to the dynamic stability of the trimaran vessel, which is significant for its seakeeping design.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.