用等效材料概念分析含多个圆弧裂纹的环氧树脂板的延性破坏

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Pourseifi, A. S. Rahimi
{"title":"用等效材料概念分析含多个圆弧裂纹的环氧树脂板的延性破坏","authors":"M. Pourseifi,&nbsp;A. S. Rahimi","doi":"10.1186/s40712-020-00123-1","DOIUrl":null,"url":null,"abstract":"<p>Ductile failure of polymeric samples weakened by circular arc cracks is studied theoretically and experimentally in this research. Various arrangements of cracks with different arc angles are considered in the specimens such that crack tips experienced the mixed mode I/II loading conditions. Fracture tests are conducted on the multi-cracked specimens and their fracture loads are achieved. To provide the results, the equivalent material concept (EMC) is used in conjunction of dislocation method and a brittle fracture criterion such that there is no necessity for performing complex and time-consuming elastic-plastic damage analyses. Theoretical and experimental stress intensity factors are computed and compared with each other by employing the fracture curves which demonstrate the appropriate efficiency of proposed method to predict the tests results.</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"16 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-020-00123-1","citationCount":"1","resultStr":"{\"title\":\"Ductile failure analysis of epoxy resin plates containing multiple circular arc cracks by means of the equivalent material concept\",\"authors\":\"M. Pourseifi,&nbsp;A. S. Rahimi\",\"doi\":\"10.1186/s40712-020-00123-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ductile failure of polymeric samples weakened by circular arc cracks is studied theoretically and experimentally in this research. Various arrangements of cracks with different arc angles are considered in the specimens such that crack tips experienced the mixed mode I/II loading conditions. Fracture tests are conducted on the multi-cracked specimens and their fracture loads are achieved. To provide the results, the equivalent material concept (EMC) is used in conjunction of dislocation method and a brittle fracture criterion such that there is no necessity for performing complex and time-consuming elastic-plastic damage analyses. Theoretical and experimental stress intensity factors are computed and compared with each other by employing the fracture curves which demonstrate the appropriate efficiency of proposed method to predict the tests results.</p>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40712-020-00123-1\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-020-00123-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-020-00123-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文从理论和实验两方面研究了经圆弧裂纹削弱的聚合物试样的延性破坏。试件中考虑了不同圆弧角裂纹的排列方式,使裂纹尖端经历了I/II型混合加载条件。对多裂纹试件进行了断裂试验,获得了断裂载荷。为了提供结果,将等效材料概念(EMC)与位错法和脆性断裂准则结合使用,从而无需进行复杂且耗时的弹塑性损伤分析。利用断裂曲线计算了理论应力强度因子和实验应力强度因子,并进行了比较,验证了该方法预测试验结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ductile failure analysis of epoxy resin plates containing multiple circular arc cracks by means of the equivalent material concept

Ductile failure analysis of epoxy resin plates containing multiple circular arc cracks by means of the equivalent material concept

Ductile failure of polymeric samples weakened by circular arc cracks is studied theoretically and experimentally in this research. Various arrangements of cracks with different arc angles are considered in the specimens such that crack tips experienced the mixed mode I/II loading conditions. Fracture tests are conducted on the multi-cracked specimens and their fracture loads are achieved. To provide the results, the equivalent material concept (EMC) is used in conjunction of dislocation method and a brittle fracture criterion such that there is no necessity for performing complex and time-consuming elastic-plastic damage analyses. Theoretical and experimental stress intensity factors are computed and compared with each other by employing the fracture curves which demonstrate the appropriate efficiency of proposed method to predict the tests results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信