血管模拟用凝胶材料的力学性能和光弹性性能研究

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Daichi Yamada, Simon Hori, Shuhei Abe, Yuki Kumeno, T. Yamazaki, C. Oka, J. Sakurai, S. Hata
{"title":"血管模拟用凝胶材料的力学性能和光弹性性能研究","authors":"Daichi Yamada, Simon Hori, Shuhei Abe, Yuki Kumeno, T. Yamazaki, C. Oka, J. Sakurai, S. Hata","doi":"10.1115/1.4051516","DOIUrl":null,"url":null,"abstract":"\n Catheter surgery is a minimally invasive treatment in which visual information is limited to a two-dimensional image generated by an X-ray camera. This results in the possibility that stress applied by the catheter onto a blood vessel wall damages the vessel. Doctors must therefore be skillful at catheter surgery. We proposed a catheter surgery simulator that visualizes the stress applied to the blood vessel wall using photoelasticity. The manufacture of this simulator requires creating blood vessel mimics that reproduce the physical properties of blood vessel tissue using photoelasticity. This study investigated the mechanical and photoelastic properties of gel materials and selected a gel composition suitable for making blood vessel mimics. The mechanical properties of polyvinyl alcohol (PVA) hydrogel changed in the range 70–335 kPa by changing the composition ratio, and double network (DN) gel changed in the range 0.13–1.06 MPa by changing the composition ratio. These gels could be adjusted by changing the material composition to provide Young's moduli similar to that of blood vessels. The photoelastic properties of PVA hydrogel changed in the range 1.38–2.76 × 10−9/Pa by changing the composition ratio, and DN gel changed in the range 0.012–0.029 × 10−9/Pa by changing the composition ratio.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examination of Mechanical Properties and Photoelastic Properties of Gel Material for Blood Vesssel Mimics\",\"authors\":\"Daichi Yamada, Simon Hori, Shuhei Abe, Yuki Kumeno, T. Yamazaki, C. Oka, J. Sakurai, S. Hata\",\"doi\":\"10.1115/1.4051516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Catheter surgery is a minimally invasive treatment in which visual information is limited to a two-dimensional image generated by an X-ray camera. This results in the possibility that stress applied by the catheter onto a blood vessel wall damages the vessel. Doctors must therefore be skillful at catheter surgery. We proposed a catheter surgery simulator that visualizes the stress applied to the blood vessel wall using photoelasticity. The manufacture of this simulator requires creating blood vessel mimics that reproduce the physical properties of blood vessel tissue using photoelasticity. This study investigated the mechanical and photoelastic properties of gel materials and selected a gel composition suitable for making blood vessel mimics. The mechanical properties of polyvinyl alcohol (PVA) hydrogel changed in the range 70–335 kPa by changing the composition ratio, and double network (DN) gel changed in the range 0.13–1.06 MPa by changing the composition ratio. These gels could be adjusted by changing the material composition to provide Young's moduli similar to that of blood vessels. The photoelastic properties of PVA hydrogel changed in the range 1.38–2.76 × 10−9/Pa by changing the composition ratio, and DN gel changed in the range 0.012–0.029 × 10−9/Pa by changing the composition ratio.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051516\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051516","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

导管手术是一种微创治疗,其中视觉信息仅限于x射线相机生成的二维图像。这导致导管施加在血管壁上的压力可能会损坏血管。因此,医生必须精通导管手术。我们提出了一种导管手术模拟器,可以利用光弹性来可视化施加在血管壁上的应力。制造这个模拟器需要创造血管模拟物,利用光弹性再现血管组织的物理特性。本研究考察了凝胶材料的力学和光弹性性能,并选择了一种适合制作血管模拟物的凝胶组合物。通过改变组成比,聚乙烯醇(PVA)水凝胶的力学性能在70 ~ 335 kPa范围内发生变化;通过改变组成比,双网(DN)凝胶的力学性能在0.13 ~ 1.06 MPa范围内变化。这些凝胶可以通过改变材料成分来调节,以提供类似于血管的杨氏模量。通过改变组成比,PVA水凝胶的光弹性变化范围为1.38 ~ 2.76 × 10−9/Pa;通过改变组成比,DN凝胶的光弹性变化范围为0.012 ~ 0.029 × 10−9/Pa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examination of Mechanical Properties and Photoelastic Properties of Gel Material for Blood Vesssel Mimics
Catheter surgery is a minimally invasive treatment in which visual information is limited to a two-dimensional image generated by an X-ray camera. This results in the possibility that stress applied by the catheter onto a blood vessel wall damages the vessel. Doctors must therefore be skillful at catheter surgery. We proposed a catheter surgery simulator that visualizes the stress applied to the blood vessel wall using photoelasticity. The manufacture of this simulator requires creating blood vessel mimics that reproduce the physical properties of blood vessel tissue using photoelasticity. This study investigated the mechanical and photoelastic properties of gel materials and selected a gel composition suitable for making blood vessel mimics. The mechanical properties of polyvinyl alcohol (PVA) hydrogel changed in the range 70–335 kPa by changing the composition ratio, and double network (DN) gel changed in the range 0.13–1.06 MPa by changing the composition ratio. These gels could be adjusted by changing the material composition to provide Young's moduli similar to that of blood vessels. The photoelastic properties of PVA hydrogel changed in the range 1.38–2.76 × 10−9/Pa by changing the composition ratio, and DN gel changed in the range 0.012–0.029 × 10−9/Pa by changing the composition ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信